Extensions 1→N→G→Q→1 with N=C4 and Q=D34

Direct product G=N×Q with N=C4 and Q=D34
dρLabelID
C2×C4×D17136C2xC4xD17272,37

Semidirect products G=N:Q with N=C4 and Q=D34
extensionφ:Q→Aut NdρLabelID
C41D34 = D4×D17φ: D34/D17C2 ⊆ Aut C4684+C4:1D34272,40
C42D34 = C2×D68φ: D34/C34C2 ⊆ Aut C4136C4:2D34272,38

Non-split extensions G=N.Q with N=C4 and Q=D34
extensionφ:Q→Aut NdρLabelID
C4.1D34 = D4⋊D17φ: D34/D17C2 ⊆ Aut C41364+C4.1D34272,15
C4.2D34 = D4.D17φ: D34/D17C2 ⊆ Aut C41364-C4.2D34272,16
C4.3D34 = Q8⋊D17φ: D34/D17C2 ⊆ Aut C41364+C4.3D34272,17
C4.4D34 = C17⋊Q16φ: D34/D17C2 ⊆ Aut C42724-C4.4D34272,18
C4.5D34 = D42D17φ: D34/D17C2 ⊆ Aut C41364-C4.5D34272,41
C4.6D34 = Q8×D17φ: D34/D17C2 ⊆ Aut C41364-C4.6D34272,42
C4.7D34 = D68⋊C2φ: D34/D17C2 ⊆ Aut C41364+C4.7D34272,43
C4.8D34 = C136⋊C2φ: D34/C34C2 ⊆ Aut C41362C4.8D34272,6
C4.9D34 = D136φ: D34/C34C2 ⊆ Aut C41362+C4.9D34272,7
C4.10D34 = Dic68φ: D34/C34C2 ⊆ Aut C42722-C4.10D34272,8
C4.11D34 = C2×Dic34φ: D34/C34C2 ⊆ Aut C4272C4.11D34272,36
C4.12D34 = C8×D17central extension (φ=1)1362C4.12D34272,4
C4.13D34 = C8⋊D17central extension (φ=1)1362C4.13D34272,5
C4.14D34 = C2×C173C8central extension (φ=1)272C4.14D34272,9
C4.15D34 = C68.4C4central extension (φ=1)1362C4.15D34272,10
C4.16D34 = D685C2central extension (φ=1)1362C4.16D34272,39

׿
×
𝔽