extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊S3)⋊1C4 = C62.19C23 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):1C4 | 288,497 |
(C4×C3⋊S3)⋊2C4 = C62.70C23 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):2C4 | 288,548 |
(C4×C3⋊S3)⋊3C4 = C4⋊C4×C3⋊S3 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3):3C4 | 288,748 |
(C4×C3⋊S3)⋊4C4 = C62.236C23 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3):4C4 | 288,749 |
(C4×C3⋊S3)⋊5C4 = C62.44C23 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):5C4 | 288,522 |
(C4×C3⋊S3)⋊6C4 = C4×C6.D6 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):6C4 | 288,530 |
(C4×C3⋊S3)⋊7C4 = C122⋊16C2 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3):7C4 | 288,729 |
(C4×C3⋊S3)⋊8C4 = C2×C4×C32⋊C4 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):8C4 | 288,932 |
(C4×C3⋊S3)⋊9C4 = C2×C4⋊(C32⋊C4) | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):9C4 | 288,933 |
(C4×C3⋊S3)⋊10C4 = (C6×C12)⋊5C4 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3):10C4 | 288,934 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊S3).1C4 = C4.3F9 | φ: C4/C1 → C4 ⊆ Out C4×C3⋊S3 | 48 | 8 | (C4xC3:S3).1C4 | 288,861 |
(C4×C3⋊S3).2C4 = C4.F9 | φ: C4/C1 → C4 ⊆ Out C4×C3⋊S3 | 48 | 8 | (C4xC3:S3).2C4 | 288,862 |
(C4×C3⋊S3).3C4 = C4×F9 | φ: C4/C1 → C4 ⊆ Out C4×C3⋊S3 | 36 | 8 | (C4xC3:S3).3C4 | 288,863 |
(C4×C3⋊S3).4C4 = C4⋊F9 | φ: C4/C1 → C4 ⊆ Out C4×C3⋊S3 | 36 | 8 | (C4xC3:S3).4C4 | 288,864 |
(C4×C3⋊S3).5C4 = C3⋊C8⋊20D6 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).5C4 | 288,466 |
(C4×C3⋊S3).6C4 = M4(2)×C3⋊S3 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3).6C4 | 288,763 |
(C4×C3⋊S3).7C4 = C24.60D6 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).7C4 | 288,190 |
(C4×C3⋊S3).8C4 = C24.62D6 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).8C4 | 288,192 |
(C4×C3⋊S3).9C4 = C48⋊S3 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).9C4 | 288,273 |
(C4×C3⋊S3).10C4 = C3⋊S3⋊3C16 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).10C4 | 288,412 |
(C4×C3⋊S3).11C4 = C32⋊3M5(2) | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).11C4 | 288,413 |
(C4×C3⋊S3).12C4 = C2×C12.29D6 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).12C4 | 288,464 |
(C4×C3⋊S3).13C4 = C2×C12.31D6 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).13C4 | 288,468 |
(C4×C3⋊S3).14C4 = C2×C24⋊S3 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).14C4 | 288,757 |
(C4×C3⋊S3).15C4 = C2×C3⋊S3⋊3C8 | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).15C4 | 288,929 |
(C4×C3⋊S3).16C4 = C2×C32⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).16C4 | 288,930 |
(C4×C3⋊S3).17C4 = C3⋊S3⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).17C4 | 288,931 |
(C4×C3⋊S3).18C4 = C16×C3⋊S3 | φ: trivial image | 144 | | (C4xC3:S3).18C4 | 288,272 |
(C4×C3⋊S3).19C4 = C2×C8×C3⋊S3 | φ: trivial image | 144 | | (C4xC3:S3).19C4 | 288,756 |