Copied to
clipboard

G = C4⋊F9order 288 = 25·32

The semidirect product of C4 and F9 acting via F9/C32⋊C4=C2

metabelian, soluble, monomial

Aliases: C4⋊F9, (C3×C12)⋊2C8, C2.5(C2×F9), C321(C4⋊C8), C3⋊Dic32C8, (C2×F9).2C2, C32⋊C4.4D4, C32⋊C4.2Q8, C3⋊S3.1M4(2), (C4×C3⋊S3).4C4, (C3×C6).4(C2×C8), C3⋊S3.2(C4⋊C4), (C4×C32⋊C4).7C2, (C2×C32⋊C4).5C4, (C2×C32⋊C4).10C22, (C2×C3⋊S3).2(C2×C4), SmallGroup(288,864)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C4⋊F9
C1C32C3⋊S3C32⋊C4C2×C32⋊C4C2×F9 — C4⋊F9
C32C3×C6 — C4⋊F9
C1C2C4

Generators and relations for C4⋊F9
 G = < a,b,c,d | a4=b3=c3=d8=1, ab=ba, ac=ca, dad-1=a-1, dbd-1=bc=cb, dcd-1=b >

9C2
9C2
4C3
9C4
9C4
9C22
9C4
18C4
4C6
12S3
12S3
9C2×C4
9C2×C4
9C2×C4
18C8
18C8
4C12
12D6
12Dic3
9C2×C8
9C2×C8
9C42
12C4×S3
2C32⋊C4
9C4⋊C8
2F9
2F9

Character table of C4⋊F9

 class 12A2B2C34A4B4C4D4E4F4G4H68A8B8C8D8E8F8G8H12A12B
 size 11998299991818188181818181818181888
ρ1111111111111111111111111    trivial
ρ211111-11111-1-1-11-1111-1-1-11-1-1    linear of order 2
ρ311111-11111-1-1-111-1-1-1111-1-1-1    linear of order 2
ρ411111111111111-1-1-1-1-1-1-1-111    linear of order 2
ρ5111111-1-1-1-11-1-11i-iii-i-ii-i11    linear of order 4
ρ611111-1-1-1-1-1-1111ii-i-i-i-iii-1-1    linear of order 4
ρ711111-1-1-1-1-1-1111-i-iiiii-i-i-1-1    linear of order 4
ρ8111111-1-1-1-11-1-11-ii-i-iii-ii11    linear of order 4
ρ911-1-111i-ii-i-1-ii1ζ85ζ87ζ8ζ85ζ83ζ87ζ8ζ8311    linear of order 8
ρ1011-1-11-1-ii-ii1-ii1ζ83ζ85ζ83ζ87ζ85ζ8ζ87ζ8-1-1    linear of order 8
ρ1111-1-11-1-ii-ii1-ii1ζ87ζ8ζ87ζ83ζ8ζ85ζ83ζ85-1-1    linear of order 8
ρ1211-1-11-1i-ii-i1i-i1ζ85ζ83ζ85ζ8ζ83ζ87ζ8ζ87-1-1    linear of order 8
ρ1311-1-11-1i-ii-i1i-i1ζ8ζ87ζ8ζ85ζ87ζ83ζ85ζ83-1-1    linear of order 8
ρ1411-1-111-ii-ii-1i-i1ζ83ζ8ζ87ζ83ζ85ζ8ζ87ζ8511    linear of order 8
ρ1511-1-111-ii-ii-1i-i1ζ87ζ85ζ83ζ87ζ8ζ85ζ83ζ811    linear of order 8
ρ1611-1-111i-ii-i-1-ii1ζ8ζ83ζ85ζ8ζ87ζ83ζ85ζ8711    linear of order 8
ρ172-22-2202-2-22000-20000000000    orthogonal lifted from D4
ρ182-22-220-222-2000-20000000000    symplectic lifted from Q8, Schur index 2
ρ192-2-2220-2i-2i2i2i000-20000000000    complex lifted from M4(2)
ρ202-2-22202i2i-2i-2i000-20000000000    complex lifted from M4(2)
ρ218800-180000000-100000000-1-1    orthogonal lifted from F9
ρ228800-1-80000000-10000000011    orthogonal lifted from C2×F9
ρ238-800-100000000100000000-3i3i    complex faithful
ρ248-800-1000000001000000003i-3i    complex faithful

Smallest permutation representation of C4⋊F9
On 36 points
Generators in S36
(1 3 2 4)(5 20 35 22)(6 23 36 13)(7 14 29 24)(8 25 30 15)(9 16 31 26)(10 27 32 17)(11 18 33 28)(12 21 34 19)
(1 7 11)(2 29 33)(3 14 18)(4 24 28)(5 8 6)(9 10 12)(13 22 15)(16 27 21)(17 19 26)(20 25 23)(30 36 35)(31 32 34)
(1 8 12)(2 30 34)(3 25 21)(4 15 19)(5 10 11)(6 9 7)(13 26 24)(14 23 16)(17 28 22)(18 20 27)(29 36 31)(32 33 35)
(3 4)(5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,3,2,4)(5,20,35,22)(6,23,36,13)(7,14,29,24)(8,25,30,15)(9,16,31,26)(10,27,32,17)(11,18,33,28)(12,21,34,19), (1,7,11)(2,29,33)(3,14,18)(4,24,28)(5,8,6)(9,10,12)(13,22,15)(16,27,21)(17,19,26)(20,25,23)(30,36,35)(31,32,34), (1,8,12)(2,30,34)(3,25,21)(4,15,19)(5,10,11)(6,9,7)(13,26,24)(14,23,16)(17,28,22)(18,20,27)(29,36,31)(32,33,35), (3,4)(5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36)>;

G:=Group( (1,3,2,4)(5,20,35,22)(6,23,36,13)(7,14,29,24)(8,25,30,15)(9,16,31,26)(10,27,32,17)(11,18,33,28)(12,21,34,19), (1,7,11)(2,29,33)(3,14,18)(4,24,28)(5,8,6)(9,10,12)(13,22,15)(16,27,21)(17,19,26)(20,25,23)(30,36,35)(31,32,34), (1,8,12)(2,30,34)(3,25,21)(4,15,19)(5,10,11)(6,9,7)(13,26,24)(14,23,16)(17,28,22)(18,20,27)(29,36,31)(32,33,35), (3,4)(5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,3,2,4),(5,20,35,22),(6,23,36,13),(7,14,29,24),(8,25,30,15),(9,16,31,26),(10,27,32,17),(11,18,33,28),(12,21,34,19)], [(1,7,11),(2,29,33),(3,14,18),(4,24,28),(5,8,6),(9,10,12),(13,22,15),(16,27,21),(17,19,26),(20,25,23),(30,36,35),(31,32,34)], [(1,8,12),(2,30,34),(3,25,21),(4,15,19),(5,10,11),(6,9,7),(13,26,24),(14,23,16),(17,28,22),(18,20,27),(29,36,31),(32,33,35)], [(3,4),(5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36)]])

Matrix representation of C4⋊F9 in GL10(𝔽73)

0100000000
72000000000
00720000000
00072000000
00007200000
00000720000
00000072000
00000007200
00000000720
00000000072
,
1000000000
0100000000
00000007210
00000007201
00000007200
00100007200
00010007200
00001007200
00000107200
00000017200
,
1000000000
0100000000
00072000000
00172000000
00072001000
00072100000
00072010000
00072000001
00072000100
00072000010
,
22000000000
05100000000
0000100000
0000000100
0000010000
0000000010
0010000000
0000000001
0001000000
0000001000

G:=sub<GL(10,GF(73))| [0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,72,72,72,72,72,72,72,72,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,72,72,72,72,72,72,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0],[22,0,0,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0] >;

C4⋊F9 in GAP, Magma, Sage, TeX

C_4\rtimes F_9
% in TeX

G:=Group("C4:F9");
// GroupNames label

G:=SmallGroup(288,864);
// by ID

G=gap.SmallGroup(288,864);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,64,100,4037,2371,201,10982,3156,622]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C4⋊F9 in TeX
Character table of C4⋊F9 in TeX

׿
×
𝔽