Copied to
clipboard

G = C4×F9order 288 = 25·32

Direct product of C4 and F9

direct product, metabelian, soluble, monomial, A-group

Aliases: C4×F9, C32⋊(C4×C8), (C3×C12)⋊1C8, C32⋊C41C8, C2.2(C2×F9), C3⋊Dic31C8, (C2×F9).4C2, C3⋊S3.1C42, (C4×C3⋊S3).3C4, C3⋊S3.1(C2×C8), (C3×C6).3(C2×C8), C32⋊C4.4(C2×C4), (C2×C32⋊C4).4C4, (C4×C32⋊C4).6C2, (C2×C32⋊C4).9C22, (C2×C3⋊S3).1(C2×C4), SmallGroup(288,863)

Series: Derived Chief Lower central Upper central

C1C32 — C4×F9
C1C32C3⋊S3C32⋊C4C2×C32⋊C4C2×F9 — C4×F9
C32 — C4×F9
C1C4

Generators and relations for C4×F9
 G = < a,b,c,d | a4=b3=c3=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

9C2
9C2
4C3
9C4
9C4
9C4
9C4
9C22
9C4
4C6
12S3
12S3
9C8
9C8
9C8
9C2×C4
9C2×C4
9C2×C4
9C8
4C12
12D6
12Dic3
9C42
9C2×C8
9C2×C8
12C4×S3
9C4×C8

Smallest permutation representation of C4×F9
On 36 points
Generators in S36
(1 3 4 2)(5 35 15 24)(6 36 16 25)(7 29 17 26)(8 30 18 27)(9 31 19 28)(10 32 20 21)(11 33 13 22)(12 34 14 23)
(1 13 17)(2 33 29)(3 22 26)(4 11 7)(5 6 8)(9 12 10)(14 20 19)(15 16 18)(21 28 23)(24 25 27)(30 35 36)(31 34 32)
(1 14 18)(2 34 30)(3 23 27)(4 12 8)(5 11 10)(6 7 9)(13 20 15)(16 17 19)(21 24 22)(25 26 28)(29 31 36)(32 35 33)
(5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,3,4,2)(5,35,15,24)(6,36,16,25)(7,29,17,26)(8,30,18,27)(9,31,19,28)(10,32,20,21)(11,33,13,22)(12,34,14,23), (1,13,17)(2,33,29)(3,22,26)(4,11,7)(5,6,8)(9,12,10)(14,20,19)(15,16,18)(21,28,23)(24,25,27)(30,35,36)(31,34,32), (1,14,18)(2,34,30)(3,23,27)(4,12,8)(5,11,10)(6,7,9)(13,20,15)(16,17,19)(21,24,22)(25,26,28)(29,31,36)(32,35,33), (5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36)>;

G:=Group( (1,3,4,2)(5,35,15,24)(6,36,16,25)(7,29,17,26)(8,30,18,27)(9,31,19,28)(10,32,20,21)(11,33,13,22)(12,34,14,23), (1,13,17)(2,33,29)(3,22,26)(4,11,7)(5,6,8)(9,12,10)(14,20,19)(15,16,18)(21,28,23)(24,25,27)(30,35,36)(31,34,32), (1,14,18)(2,34,30)(3,23,27)(4,12,8)(5,11,10)(6,7,9)(13,20,15)(16,17,19)(21,24,22)(25,26,28)(29,31,36)(32,35,33), (5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36) );

G=PermutationGroup([(1,3,4,2),(5,35,15,24),(6,36,16,25),(7,29,17,26),(8,30,18,27),(9,31,19,28),(10,32,20,21),(11,33,13,22),(12,34,14,23)], [(1,13,17),(2,33,29),(3,22,26),(4,11,7),(5,6,8),(9,12,10),(14,20,19),(15,16,18),(21,28,23),(24,25,27),(30,35,36),(31,34,32)], [(1,14,18),(2,34,30),(3,23,27),(4,12,8),(5,11,10),(6,7,9),(13,20,15),(16,17,19),(21,24,22),(25,26,28),(29,31,36),(32,35,33)], [(5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36)])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C···4L 6 8A···8P12A12B
order12223444···468···81212
size11998119···989···988

36 irreducible representations

dim111111111888
type+++++
imageC1C2C2C4C4C4C8C8C8F9C2×F9C4×F9
kernelC4×F9C4×C32⋊C4C2×F9C4×C3⋊S3F9C2×C32⋊C4C3⋊Dic3C3×C12C32⋊C4C4C2C1
# reps112282448112

Matrix representation of C4×F9 in GL9(𝔽73)

2700000000
0720000000
0072000000
0007200000
0000720000
0000072000
0000007200
0000000720
0000000072
,
100000000
0000007210
0000007201
0000007200
0100007200
0010007200
0001007200
0000107200
0000017200
,
100000000
0072000000
0172000000
0072001000
0072100000
0072010000
0072000001
0072000100
0072000010
,
5100000000
000100000
000000100
000010000
000000010
010000000
000000001
001000000
000001000

G:=sub<GL(9,GF(73))| [27,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,72,72,72,72,72,72,72,72,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,72,72,72,72,72,72,72,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[51,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0] >;

C4×F9 in GAP, Magma, Sage, TeX

C_4\times F_9
% in TeX

G:=Group("C4xF9");
// GroupNames label

G:=SmallGroup(288,863);
// by ID

G=gap.SmallGroup(288,863);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,64,100,4037,2371,201,10982,3156,622]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C4×F9 in TeX

׿
×
𝔽