Extensions 1→N→G→Q→1 with N=C6×Q8 and Q=S3

Direct product G=N×Q with N=C6×Q8 and Q=S3
dρLabelID
S3×C6×Q896S3xC6xQ8288,995

Semidirect products G=N:Q with N=C6×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×Q8)⋊1S3 = C2×C6.6S4φ: S3/C1S3 ⊆ Out C6×Q848(C6xQ8):1S3288,911
(C6×Q8)⋊2S3 = SL2(𝔽3).D6φ: S3/C1S3 ⊆ Out C6×Q8484(C6xQ8):2S3288,912
(C6×Q8)⋊3S3 = C6×GL2(𝔽3)φ: S3/C1S3 ⊆ Out C6×Q848(C6xQ8):3S3288,900
(C6×Q8)⋊4S3 = C3×Q8.D6φ: S3/C1S3 ⊆ Out C6×Q8484(C6xQ8):4S3288,901
(C6×Q8)⋊5S3 = C2×C3211SD16φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8):5S3288,798
(C6×Q8)⋊6S3 = C62.134D4φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8):6S3288,799
(C6×Q8)⋊7S3 = C62.261C23φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8):7S3288,803
(C6×Q8)⋊8S3 = C62.262C23φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8):8S3288,804
(C6×Q8)⋊9S3 = C2×Q8×C3⋊S3φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8):9S3288,1010
(C6×Q8)⋊10S3 = C2×C12.26D6φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8):10S3288,1011
(C6×Q8)⋊11S3 = C3272- 1+4φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8):11S3288,1012
(C6×Q8)⋊12S3 = C6×Q82S3φ: S3/C3C2 ⊆ Out C6×Q896(C6xQ8):12S3288,712
(C6×Q8)⋊13S3 = C3×Q8.11D6φ: S3/C3C2 ⊆ Out C6×Q8484(C6xQ8):13S3288,713
(C6×Q8)⋊14S3 = C3×D63Q8φ: S3/C3C2 ⊆ Out C6×Q896(C6xQ8):14S3288,717
(C6×Q8)⋊15S3 = C3×C12.23D4φ: S3/C3C2 ⊆ Out C6×Q896(C6xQ8):15S3288,718
(C6×Q8)⋊16S3 = C3×Q8.15D6φ: S3/C3C2 ⊆ Out C6×Q8484(C6xQ8):16S3288,997
(C6×Q8)⋊17S3 = C6×Q83S3φ: trivial image96(C6xQ8):17S3288,996

Non-split extensions G=N.Q with N=C6×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×Q8).1S3 = Q8⋊Dic9φ: S3/C1S3 ⊆ Out C6×Q8288(C6xQ8).1S3288,69
(C6×Q8).2S3 = C2×Q8.D9φ: S3/C1S3 ⊆ Out C6×Q8288(C6xQ8).2S3288,335
(C6×Q8).3S3 = C2×Q8⋊D9φ: S3/C1S3 ⊆ Out C6×Q8144(C6xQ8).3S3288,336
(C6×Q8).4S3 = Q8.D18φ: S3/C1S3 ⊆ Out C6×Q81444(C6xQ8).4S3288,337
(C6×Q8).5S3 = C6.GL2(𝔽3)φ: S3/C1S3 ⊆ Out C6×Q896(C6xQ8).5S3288,403
(C6×Q8).6S3 = C2×C6.5S4φ: S3/C1S3 ⊆ Out C6×Q896(C6xQ8).6S3288,910
(C6×Q8).7S3 = C3×Q8⋊Dic3φ: S3/C1S3 ⊆ Out C6×Q896(C6xQ8).7S3288,399
(C6×Q8).8S3 = C6×CSU2(𝔽3)φ: S3/C1S3 ⊆ Out C6×Q896(C6xQ8).8S3288,899
(C6×Q8).9S3 = C36.9D4φ: S3/C3C2 ⊆ Out C6×Q81444(C6xQ8).9S3288,42
(C6×Q8).10S3 = Q82Dic9φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).10S3288,43
(C6×Q8).11S3 = C2×C9⋊Q16φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).11S3288,151
(C6×Q8).12S3 = C2×Q82D9φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8).12S3288,152
(C6×Q8).13S3 = C36.C23φ: S3/C3C2 ⊆ Out C6×Q81444(C6xQ8).13S3288,153
(C6×Q8).14S3 = Dic9⋊Q8φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).14S3288,154
(C6×Q8).15S3 = Q8×Dic9φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).15S3288,155
(C6×Q8).16S3 = D183Q8φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8).16S3288,156
(C6×Q8).17S3 = C36.23D4φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8).17S3288,157
(C6×Q8).18S3 = C62.117D4φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).18S3288,310
(C6×Q8).19S3 = (C6×C12).C4φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8).19S3288,311
(C6×Q8).20S3 = C2×Q8×D9φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8).20S3288,359
(C6×Q8).21S3 = C2×Q83D9φ: S3/C3C2 ⊆ Out C6×Q8144(C6xQ8).21S3288,360
(C6×Q8).22S3 = Q8.15D18φ: S3/C3C2 ⊆ Out C6×Q81444(C6xQ8).22S3288,361
(C6×Q8).23S3 = C2×C327Q16φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).23S3288,800
(C6×Q8).24S3 = C62.259C23φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).24S3288,801
(C6×Q8).25S3 = Q8×C3⋊Dic3φ: S3/C3C2 ⊆ Out C6×Q8288(C6xQ8).25S3288,802
(C6×Q8).26S3 = C3×Q82Dic3φ: S3/C3C2 ⊆ Out C6×Q896(C6xQ8).26S3288,269
(C6×Q8).27S3 = C3×C12.10D4φ: S3/C3C2 ⊆ Out C6×Q8484(C6xQ8).27S3288,270
(C6×Q8).28S3 = C6×C3⋊Q16φ: S3/C3C2 ⊆ Out C6×Q896(C6xQ8).28S3288,714
(C6×Q8).29S3 = C3×Dic3⋊Q8φ: S3/C3C2 ⊆ Out C6×Q896(C6xQ8).29S3288,715
(C6×Q8).30S3 = C3×Q8×Dic3φ: trivial image96(C6xQ8).30S3288,716

׿
×
𝔽