extension | φ:Q→Out N | d | ρ | Label | ID |
(C6xQ8).1S3 = Q8:Dic9 | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 288 | | (C6xQ8).1S3 | 288,69 |
(C6xQ8).2S3 = C2xQ8.D9 | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 288 | | (C6xQ8).2S3 | 288,335 |
(C6xQ8).3S3 = C2xQ8:D9 | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 144 | | (C6xQ8).3S3 | 288,336 |
(C6xQ8).4S3 = Q8.D18 | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 144 | 4 | (C6xQ8).4S3 | 288,337 |
(C6xQ8).5S3 = C6.GL2(F3) | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 96 | | (C6xQ8).5S3 | 288,403 |
(C6xQ8).6S3 = C2xC6.5S4 | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 96 | | (C6xQ8).6S3 | 288,910 |
(C6xQ8).7S3 = C3xQ8:Dic3 | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 96 | | (C6xQ8).7S3 | 288,399 |
(C6xQ8).8S3 = C6xCSU2(F3) | φ: S3/C1 → S3 ⊆ Out C6xQ8 | 96 | | (C6xQ8).8S3 | 288,899 |
(C6xQ8).9S3 = C36.9D4 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | 4 | (C6xQ8).9S3 | 288,42 |
(C6xQ8).10S3 = Q8:2Dic9 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).10S3 | 288,43 |
(C6xQ8).11S3 = C2xC9:Q16 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).11S3 | 288,151 |
(C6xQ8).12S3 = C2xQ8:2D9 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | | (C6xQ8).12S3 | 288,152 |
(C6xQ8).13S3 = C36.C23 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | 4 | (C6xQ8).13S3 | 288,153 |
(C6xQ8).14S3 = Dic9:Q8 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).14S3 | 288,154 |
(C6xQ8).15S3 = Q8xDic9 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).15S3 | 288,155 |
(C6xQ8).16S3 = D18:3Q8 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | | (C6xQ8).16S3 | 288,156 |
(C6xQ8).17S3 = C36.23D4 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | | (C6xQ8).17S3 | 288,157 |
(C6xQ8).18S3 = C62.117D4 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).18S3 | 288,310 |
(C6xQ8).19S3 = (C6xC12).C4 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | | (C6xQ8).19S3 | 288,311 |
(C6xQ8).20S3 = C2xQ8xD9 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | | (C6xQ8).20S3 | 288,359 |
(C6xQ8).21S3 = C2xQ8:3D9 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | | (C6xQ8).21S3 | 288,360 |
(C6xQ8).22S3 = Q8.15D18 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 144 | 4 | (C6xQ8).22S3 | 288,361 |
(C6xQ8).23S3 = C2xC32:7Q16 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).23S3 | 288,800 |
(C6xQ8).24S3 = C62.259C23 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).24S3 | 288,801 |
(C6xQ8).25S3 = Q8xC3:Dic3 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 288 | | (C6xQ8).25S3 | 288,802 |
(C6xQ8).26S3 = C3xQ8:2Dic3 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 96 | | (C6xQ8).26S3 | 288,269 |
(C6xQ8).27S3 = C3xC12.10D4 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 48 | 4 | (C6xQ8).27S3 | 288,270 |
(C6xQ8).28S3 = C6xC3:Q16 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 96 | | (C6xQ8).28S3 | 288,714 |
(C6xQ8).29S3 = C3xDic3:Q8 | φ: S3/C3 → C2 ⊆ Out C6xQ8 | 96 | | (C6xQ8).29S3 | 288,715 |
(C6xQ8).30S3 = C3xQ8xDic3 | φ: trivial image | 96 | | (C6xQ8).30S3 | 288,716 |