Copied to
clipboard

G = C2×Q8⋊D9order 288 = 25·32

Direct product of C2 and Q8⋊D9

direct product, non-abelian, soluble

Aliases: C2×Q8⋊D9, Q8⋊D18, C6.2GL2(𝔽3), (C2×C6).8S4, (C2×Q8)⋊1D9, C6.20(C2×S4), Q8⋊C91C22, (C3×Q8).9D6, (C6×Q8).3S3, C3.(C2×GL2(𝔽3)), C22.5(C3.S4), (C2×Q8⋊C9)⋊2C2, C2.6(C2×C3.S4), SmallGroup(288,336)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — C2×Q8⋊D9
C1C2Q8C3×Q8Q8⋊C9Q8⋊D9 — C2×Q8⋊D9
Q8⋊C9 — C2×Q8⋊D9
C1C22

Generators and relations for C2×Q8⋊D9
 G = < a,b,c,d,e | a2=b4=d9=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, dbd-1=c, ebe=b-1c, dcd-1=bc, ece=b2c, ede=d-1 >

Subgroups: 527 in 81 conjugacy classes, 19 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, D4, Q8, Q8, C23, C9, C12, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, D9, C18, C3⋊C8, D12, C2×C12, C3×Q8, C3×Q8, C22×S3, C2×SD16, D18, C2×C18, C2×C3⋊C8, Q82S3, C2×D12, C6×Q8, Q8⋊C9, C22×D9, C2×Q82S3, Q8⋊D9, C2×Q8⋊C9, C2×Q8⋊D9
Quotients: C1, C2, C22, S3, D6, D9, S4, D18, GL2(𝔽3), C2×S4, C3.S4, C2×GL2(𝔽3), Q8⋊D9, C2×C3.S4, C2×Q8⋊D9

Character table of C2×Q8⋊D9

 class 12A2B2C2D2E34A4B6A6B6C8A8B8C8D9A9B9C12A12B18A18B18C18D18E18F18G18H18I
 size 11113636266222181818188881212888888888
ρ1111111111111111111111111111111    trivial
ρ21111-1-1111111-1-1-1-111111111111111    linear of order 2
ρ311-1-11-111-1-11-11-1-111111-1-1-1-111-11-1-1    linear of order 2
ρ411-1-1-1111-1-11-1-111-11111-1-1-1-111-11-1-1    linear of order 2
ρ522-2-20022-2-22-20000-1-1-12-2111-1-11-111    orthogonal lifted from D6
ρ62222002222220000-1-1-122-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ722-2-200-12-21-110000ζ9792ζ9594ζ989-119594989989ζ9594ζ97929792ζ98997929594    orthogonal lifted from D18
ρ8222200-122-1-1-10000ζ989ζ9792ζ9594-1-1ζ9792ζ9594ζ9594ζ9792ζ989ζ989ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ9222200-122-1-1-10000ζ9594ζ989ζ9792-1-1ζ989ζ9792ζ9792ζ989ζ9594ζ9594ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ10222200-122-1-1-10000ζ9792ζ9594ζ989-1-1ζ9594ζ989ζ989ζ9594ζ9792ζ9792ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ1122-2-200-12-21-110000ζ9594ζ989ζ9792-1198997929792ζ989ζ95949594ζ97929594989    orthogonal lifted from D18
ρ1222-2-200-12-21-110000ζ989ζ9792ζ9594-11979295949594ζ9792ζ989989ζ95949899792    orthogonal lifted from D18
ρ132-2-2200200-2-22--2--2-2-2-1-1-100-11-11111-11    complex lifted from GL2(𝔽3)
ρ142-22-2002002-2-2-2--2-2--2-1-1-1001-1111-111-1    complex lifted from GL2(𝔽3)
ρ152-2-2200200-2-22-2-2--2--2-1-1-100-11-11111-11    complex lifted from GL2(𝔽3)
ρ162-22-2002002-2-2--2-2--2-2-1-1-1001-1111-111-1    complex lifted from GL2(𝔽3)
ρ1733-3-3-113-11-33-31-1-11000-11000000000    orthogonal lifted from C2×S4
ρ183333113-1-1333-1-1-1-1000-1-1000000000    orthogonal lifted from S4
ρ193333-1-13-1-13331111000-1-1000000000    orthogonal lifted from S4
ρ2033-3-31-13-11-33-3-111-1000-11000000000    orthogonal lifted from C2×S4
ρ214-44-4004004-4-4000011100-11-1-1-11-1-11    orthogonal lifted from GL2(𝔽3)
ρ224-4-4400400-4-440000111001-11-1-1-1-11-1    orthogonal lifted from GL2(𝔽3)
ρ234-4-4400-20022-200009594989979200989ζ97929792ζ989ζ9594ζ9594ζ97929594ζ989    orthogonal lifted from Q8⋊D9
ρ244-44-400-200-22200009594989979200ζ9899792ζ9792ζ989ζ95949594ζ9792ζ9594989    orthogonal lifted from Q8⋊D9
ρ254-44-400-200-22200009792959498900ζ9594989ζ989ζ9594ζ97929792ζ989ζ97929594    orthogonal lifted from Q8⋊D9
ρ264-44-400-200-22200009899792959400ζ97929594ζ9594ζ9792ζ989989ζ9594ζ9899792    orthogonal lifted from Q8⋊D9
ρ274-4-4400-20022-2000097929594989009594ζ989989ζ9594ζ9792ζ9792ζ9899792ζ9594    orthogonal lifted from Q8⋊D9
ρ284-4-4400-20022-2000098997929594009792ζ95949594ζ9792ζ989ζ989ζ9594989ζ9792    orthogonal lifted from Q8⋊D9
ρ2966-6-600-3-223-3300000001-1000000000    orthogonal lifted from C2×C3.S4
ρ30666600-3-2-2-3-3-3000000011000000000    orthogonal lifted from C3.S4

Smallest permutation representation of C2×Q8⋊D9
On 144 points
Generators in S144
(1 138)(2 139)(3 140)(4 141)(5 142)(6 143)(7 144)(8 136)(9 137)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 131)(20 132)(21 133)(22 134)(23 135)(24 127)(25 128)(26 129)(27 130)(28 91)(29 92)(30 93)(31 94)(32 95)(33 96)(34 97)(35 98)(36 99)(37 84)(38 85)(39 86)(40 87)(41 88)(42 89)(43 90)(44 82)(45 83)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 100)(71 101)(72 102)
(1 113 77 106)(2 85 78 128)(3 126 79 96)(4 116 80 100)(5 88 81 131)(6 120 73 99)(7 110 74 103)(8 82 75 134)(9 123 76 93)(10 36 143 57)(11 64 144 47)(12 22 136 44)(13 30 137 60)(14 67 138 50)(15 25 139 38)(16 33 140 63)(17 70 141 53)(18 19 142 41)(20 72 42 46)(21 58 43 28)(23 66 45 49)(24 61 37 31)(26 69 39 52)(27 55 40 34)(29 48 59 65)(32 51 62 68)(35 54 56 71)(83 112 135 105)(84 94 127 124)(86 115 129 108)(87 97 130 118)(89 109 132 102)(90 91 133 121)(92 111 122 104)(95 114 125 107)(98 117 119 101)
(1 84 77 127)(2 125 78 95)(3 115 79 108)(4 87 80 130)(5 119 81 98)(6 109 73 102)(7 90 74 133)(8 122 75 92)(9 112 76 105)(10 72 143 46)(11 21 144 43)(12 29 136 59)(13 66 137 49)(14 24 138 37)(15 32 139 62)(16 69 140 52)(17 27 141 40)(18 35 142 56)(19 71 41 54)(20 57 42 36)(22 65 44 48)(23 60 45 30)(25 68 38 51)(26 63 39 33)(28 47 58 64)(31 50 61 67)(34 53 55 70)(82 111 134 104)(83 93 135 123)(85 114 128 107)(86 96 129 126)(88 117 131 101)(89 99 132 120)(91 110 121 103)(94 113 124 106)(97 116 118 100)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 54)(20 53)(21 52)(22 51)(23 50)(24 49)(25 48)(26 47)(27 46)(28 63)(29 62)(30 61)(31 60)(32 59)(33 58)(34 57)(35 56)(36 55)(37 66)(38 65)(39 64)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(73 80)(74 79)(75 78)(76 77)(82 107)(83 106)(84 105)(85 104)(86 103)(87 102)(88 101)(89 100)(90 108)(91 126)(92 125)(93 124)(94 123)(95 122)(96 121)(97 120)(98 119)(99 118)(109 130)(110 129)(111 128)(112 127)(113 135)(114 134)(115 133)(116 132)(117 131)(136 139)(137 138)(140 144)(141 143)

G:=sub<Sym(144)| (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,136)(9,137)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,131)(20,132)(21,133)(22,134)(23,135)(24,127)(25,128)(26,129)(27,130)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,82)(45,83)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,100)(71,101)(72,102), (1,113,77,106)(2,85,78,128)(3,126,79,96)(4,116,80,100)(5,88,81,131)(6,120,73,99)(7,110,74,103)(8,82,75,134)(9,123,76,93)(10,36,143,57)(11,64,144,47)(12,22,136,44)(13,30,137,60)(14,67,138,50)(15,25,139,38)(16,33,140,63)(17,70,141,53)(18,19,142,41)(20,72,42,46)(21,58,43,28)(23,66,45,49)(24,61,37,31)(26,69,39,52)(27,55,40,34)(29,48,59,65)(32,51,62,68)(35,54,56,71)(83,112,135,105)(84,94,127,124)(86,115,129,108)(87,97,130,118)(89,109,132,102)(90,91,133,121)(92,111,122,104)(95,114,125,107)(98,117,119,101), (1,84,77,127)(2,125,78,95)(3,115,79,108)(4,87,80,130)(5,119,81,98)(6,109,73,102)(7,90,74,133)(8,122,75,92)(9,112,76,105)(10,72,143,46)(11,21,144,43)(12,29,136,59)(13,66,137,49)(14,24,138,37)(15,32,139,62)(16,69,140,52)(17,27,141,40)(18,35,142,56)(19,71,41,54)(20,57,42,36)(22,65,44,48)(23,60,45,30)(25,68,38,51)(26,63,39,33)(28,47,58,64)(31,50,61,67)(34,53,55,70)(82,111,134,104)(83,93,135,123)(85,114,128,107)(86,96,129,126)(88,117,131,101)(89,99,132,120)(91,110,121,103)(94,113,124,106)(97,116,118,100), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,63)(29,62)(30,61)(31,60)(32,59)(33,58)(34,57)(35,56)(36,55)(37,66)(38,65)(39,64)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(73,80)(74,79)(75,78)(76,77)(82,107)(83,106)(84,105)(85,104)(86,103)(87,102)(88,101)(89,100)(90,108)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,118)(109,130)(110,129)(111,128)(112,127)(113,135)(114,134)(115,133)(116,132)(117,131)(136,139)(137,138)(140,144)(141,143)>;

G:=Group( (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,136)(9,137)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,131)(20,132)(21,133)(22,134)(23,135)(24,127)(25,128)(26,129)(27,130)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,82)(45,83)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,100)(71,101)(72,102), (1,113,77,106)(2,85,78,128)(3,126,79,96)(4,116,80,100)(5,88,81,131)(6,120,73,99)(7,110,74,103)(8,82,75,134)(9,123,76,93)(10,36,143,57)(11,64,144,47)(12,22,136,44)(13,30,137,60)(14,67,138,50)(15,25,139,38)(16,33,140,63)(17,70,141,53)(18,19,142,41)(20,72,42,46)(21,58,43,28)(23,66,45,49)(24,61,37,31)(26,69,39,52)(27,55,40,34)(29,48,59,65)(32,51,62,68)(35,54,56,71)(83,112,135,105)(84,94,127,124)(86,115,129,108)(87,97,130,118)(89,109,132,102)(90,91,133,121)(92,111,122,104)(95,114,125,107)(98,117,119,101), (1,84,77,127)(2,125,78,95)(3,115,79,108)(4,87,80,130)(5,119,81,98)(6,109,73,102)(7,90,74,133)(8,122,75,92)(9,112,76,105)(10,72,143,46)(11,21,144,43)(12,29,136,59)(13,66,137,49)(14,24,138,37)(15,32,139,62)(16,69,140,52)(17,27,141,40)(18,35,142,56)(19,71,41,54)(20,57,42,36)(22,65,44,48)(23,60,45,30)(25,68,38,51)(26,63,39,33)(28,47,58,64)(31,50,61,67)(34,53,55,70)(82,111,134,104)(83,93,135,123)(85,114,128,107)(86,96,129,126)(88,117,131,101)(89,99,132,120)(91,110,121,103)(94,113,124,106)(97,116,118,100), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,63)(29,62)(30,61)(31,60)(32,59)(33,58)(34,57)(35,56)(36,55)(37,66)(38,65)(39,64)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(73,80)(74,79)(75,78)(76,77)(82,107)(83,106)(84,105)(85,104)(86,103)(87,102)(88,101)(89,100)(90,108)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,118)(109,130)(110,129)(111,128)(112,127)(113,135)(114,134)(115,133)(116,132)(117,131)(136,139)(137,138)(140,144)(141,143) );

G=PermutationGroup([[(1,138),(2,139),(3,140),(4,141),(5,142),(6,143),(7,144),(8,136),(9,137),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,131),(20,132),(21,133),(22,134),(23,135),(24,127),(25,128),(26,129),(27,130),(28,91),(29,92),(30,93),(31,94),(32,95),(33,96),(34,97),(35,98),(36,99),(37,84),(38,85),(39,86),(40,87),(41,88),(42,89),(43,90),(44,82),(45,83),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,100),(71,101),(72,102)], [(1,113,77,106),(2,85,78,128),(3,126,79,96),(4,116,80,100),(5,88,81,131),(6,120,73,99),(7,110,74,103),(8,82,75,134),(9,123,76,93),(10,36,143,57),(11,64,144,47),(12,22,136,44),(13,30,137,60),(14,67,138,50),(15,25,139,38),(16,33,140,63),(17,70,141,53),(18,19,142,41),(20,72,42,46),(21,58,43,28),(23,66,45,49),(24,61,37,31),(26,69,39,52),(27,55,40,34),(29,48,59,65),(32,51,62,68),(35,54,56,71),(83,112,135,105),(84,94,127,124),(86,115,129,108),(87,97,130,118),(89,109,132,102),(90,91,133,121),(92,111,122,104),(95,114,125,107),(98,117,119,101)], [(1,84,77,127),(2,125,78,95),(3,115,79,108),(4,87,80,130),(5,119,81,98),(6,109,73,102),(7,90,74,133),(8,122,75,92),(9,112,76,105),(10,72,143,46),(11,21,144,43),(12,29,136,59),(13,66,137,49),(14,24,138,37),(15,32,139,62),(16,69,140,52),(17,27,141,40),(18,35,142,56),(19,71,41,54),(20,57,42,36),(22,65,44,48),(23,60,45,30),(25,68,38,51),(26,63,39,33),(28,47,58,64),(31,50,61,67),(34,53,55,70),(82,111,134,104),(83,93,135,123),(85,114,128,107),(86,96,129,126),(88,117,131,101),(89,99,132,120),(91,110,121,103),(94,113,124,106),(97,116,118,100)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,54),(20,53),(21,52),(22,51),(23,50),(24,49),(25,48),(26,47),(27,46),(28,63),(29,62),(30,61),(31,60),(32,59),(33,58),(34,57),(35,56),(36,55),(37,66),(38,65),(39,64),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(73,80),(74,79),(75,78),(76,77),(82,107),(83,106),(84,105),(85,104),(86,103),(87,102),(88,101),(89,100),(90,108),(91,126),(92,125),(93,124),(94,123),(95,122),(96,121),(97,120),(98,119),(99,118),(109,130),(110,129),(111,128),(112,127),(113,135),(114,134),(115,133),(116,132),(117,131),(136,139),(137,138),(140,144),(141,143)]])

Matrix representation of C2×Q8⋊D9 in GL5(𝔽73)

720000
072000
007200
00010
00001
,
10000
0127200
0726100
00010
00001
,
10000
007200
01000
00010
00001
,
10000
0666800
067600
000283
0007031
,
720000
0666800
068700
00010
000172

G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,12,72,0,0,0,72,61,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,66,67,0,0,0,68,6,0,0,0,0,0,28,70,0,0,0,3,31],[72,0,0,0,0,0,66,68,0,0,0,68,7,0,0,0,0,0,1,1,0,0,0,0,72] >;

C2×Q8⋊D9 in GAP, Magma, Sage, TeX

C_2\times Q_8\rtimes D_9
% in TeX

G:=Group("C2xQ8:D9");
// GroupNames label

G:=SmallGroup(288,336);
// by ID

G=gap.SmallGroup(288,336);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,422,142,675,2524,1908,172,1517,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^9=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=c,e*b*e=b^-1*c,d*c*d^-1=b*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C2×Q8⋊D9 in TeX

׿
×
𝔽