Extensions 1→N→G→Q→1 with N=C6xD12 and Q=C2

Direct product G=NxQ with N=C6xD12 and Q=C2
dρLabelID
C2xC6xD1296C2xC6xD12288,990

Semidirect products G=N:Q with N=C6xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xD12):1C2 = C2xC32:2D8φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):1C2288,469
(C6xD12):2C2 = D12:20D6φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12):2C2288,471
(C6xD12):3C2 = C2xC3:D24φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):3C2288,472
(C6xD12):4C2 = D12.28D6φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12):4C2288,478
(C6xD12):5C2 = D6:2D12φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):5C2288,556
(C6xD12):6C2 = C12:D12φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):6C2288,559
(C6xD12):7C2 = C62.84C23φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):7C2288,562
(C6xD12):8C2 = C12:2D12φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):8C2288,564
(C6xD12):9C2 = C3xC8:D6φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12):9C2288,679
(C6xD12):10C2 = C6xD4:S3φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):10C2288,702
(C6xD12):11C2 = C3xC12:3D4φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):11C2288,711
(C6xD12):12C2 = C3xD4:D6φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12):12C2288,720
(C6xD12):13C2 = C2xD12:5S3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):13C2288,943
(C6xD12):14C2 = C2xD12:S3φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):14C2288,944
(C6xD12):15C2 = C2xS3xD12φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):15C2288,951
(C6xD12):16C2 = C2xD6:D6φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):16C2288,952
(C6xD12):17C2 = D12:24D6φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12):17C2288,955
(C6xD12):18C2 = S3xC6xD4φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):18C2288,992
(C6xD12):19C2 = C6xQ8:3S3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):19C2288,996
(C6xD12):20C2 = C3xD4oD12φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12):20C2288,999
(C6xD12):21C2 = C62.55C23φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):21C2288,533
(C6xD12):22C2 = Dic3:D12φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):22C2288,534
(C6xD12):23C2 = D6:4D12φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):23C2288,570
(C6xD12):24C2 = C3xC4:D12φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):24C2288,645
(C6xD12):25C2 = C3xD6:D4φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):25C2288,653
(C6xD12):26C2 = C3xDic3:D4φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):26C2288,655
(C6xD12):27C2 = C3xC12:D4φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):27C2288,666
(C6xD12):28C2 = C6xD24φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12):28C2288,674
(C6xD12):29C2 = C3xC12:7D4φ: C2/C1C2 ⊆ Out C6xD1248(C6xD12):29C2288,701
(C6xD12):30C2 = C6xC4oD12φ: trivial image48(C6xD12):30C2288,991

Non-split extensions G=N.Q with N=C6xD12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xD12).1C2 = C12.D12φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12).1C2288,206
(C6xD12).2C2 = D12:3Dic3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).2C2288,210
(C6xD12).3C2 = C6.16D24φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).3C2288,211
(C6xD12).4C2 = C3xC6.D8φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).4C2288,243
(C6xD12).5C2 = C3xC12.46D4φ: C2/C1C2 ⊆ Out C6xD12484(C6xD12).5C2288,257
(C6xD12).6C2 = C2xDic6:S3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).6C2288,474
(C6xD12).7C2 = C2xD12.S3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).7C2288,476
(C6xD12).8C2 = C12.27D12φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).8C2288,508
(C6xD12).9C2 = C62.33C23φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).9C2288,511
(C6xD12).10C2 = Dic3xD12φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).10C2288,540
(C6xD12).11C2 = D12:Dic3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).11C2288,546
(C6xD12).12C2 = C3xDic3:5D4φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).12C2288,664
(C6xD12).13C2 = C6xQ8:2S3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).13C2288,712
(C6xD12).14C2 = C3xC12.23D4φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).14C2288,718
(C6xD12).15C2 = C3xC2.D24φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).15C2288,255
(C6xD12).16C2 = C62.54C23φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).16C2288,532
(C6xD12).17C2 = C3xC42:7S3φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).17C2288,646
(C6xD12).18C2 = C3xD6.D4φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).18C2288,665
(C6xD12).19C2 = C6xC24:C2φ: C2/C1C2 ⊆ Out C6xD1296(C6xD12).19C2288,673
(C6xD12).20C2 = C12xD12φ: trivial image96(C6xD12).20C2288,644

׿
x
:
Z
F
o
wr
Q
<