Extensions 1→N→G→Q→1 with N=C3 and Q=Dic34D4

Direct product G=N×Q with N=C3 and Q=Dic34D4

Semidirect products G=N:Q with N=C3 and Q=Dic34D4
extensionφ:Q→Aut NdρLabelID
C31(Dic34D4) = Dic34D12φ: Dic34D4/C4×Dic3C2 ⊆ Aut C348C3:1(Dic3:4D4)288,528
C32(Dic34D4) = C62.51C23φ: Dic34D4/Dic3⋊C4C2 ⊆ Aut C348C3:2(Dic3:4D4)288,529
C33(Dic34D4) = C62.72C23φ: Dic34D4/D6⋊C4C2 ⊆ Aut C396C3:3(Dic3:4D4)288,550
C34(Dic34D4) = C62.225C23φ: Dic34D4/C3×C22⋊C4C2 ⊆ Aut C3144C3:4(Dic3:4D4)288,738
C35(Dic34D4) = C62.49C23φ: Dic34D4/S3×C2×C4C2 ⊆ Aut C396C3:5(Dic3:4D4)288,527
C36(Dic34D4) = C62.94C23φ: Dic34D4/C22×Dic3C2 ⊆ Aut C348C3:6(Dic3:4D4)288,600
C37(Dic34D4) = C62.115C23φ: Dic34D4/C2×C3⋊D4C2 ⊆ Aut C348C3:7(Dic3:4D4)288,621

Non-split extensions G=N.Q with N=C3 and Q=Dic34D4
extensionφ:Q→Aut NdρLabelID
C3.(Dic34D4) = Dic94D4φ: Dic34D4/C3×C22⋊C4C2 ⊆ Aut C3144C3.(Dic3:4D4)288,91