metacyclic, supersoluble, monomial, Z-group
Aliases: C13⋊C24, C2.F13, C26.C12, Dic13.1C6, C13⋊C3⋊C8, C13⋊C8⋊C3, C26.C6.1C2, (C2×C13⋊C3).C4, SmallGroup(312,7)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — C13⋊C24 |
Generators and relations for C13⋊C24
G = < a,b | a13=b24=1, bab-1=a2 >
Character table of C13⋊C24
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 13 | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | 26 | |
size | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | linear of order 3 |
ρ5 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | 1 | linear of order 6 |
ρ6 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | 1 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | 1 | -i | i | -i | -i | i | i | -i | i | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | 1 | i | -i | i | i | -i | -i | i | -i | 1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ8 | ζ87 | ζ83 | ζ85 | i | -i | -i | i | 1 | ζ8 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ87 | -1 | linear of order 8 |
ρ10 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ83 | ζ85 | ζ8 | ζ87 | -i | i | i | -i | 1 | ζ83 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ85 | -1 | linear of order 8 |
ρ11 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ87 | ζ8 | ζ85 | ζ83 | -i | i | i | -i | 1 | ζ87 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ8 | -1 | linear of order 8 |
ρ12 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ85 | ζ83 | ζ87 | ζ8 | i | -i | -i | i | 1 | ζ85 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ83 | -1 | linear of order 8 |
ρ13 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | i | -i | -i | i | ζ6 | ζ6 | ζ65 | ζ65 | 1 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | 1 | linear of order 12 |
ρ14 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | -i | i | i | -i | ζ6 | ζ6 | ζ65 | ζ65 | 1 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | 1 | linear of order 12 |
ρ15 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | i | -i | -i | i | ζ65 | ζ65 | ζ6 | ζ6 | 1 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | 1 | linear of order 12 |
ρ16 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | -i | i | i | -i | ζ65 | ζ65 | ζ6 | ζ6 | 1 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | 1 | linear of order 12 |
ρ17 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ65 | ζ6 | ζ85 | ζ83 | ζ87 | ζ8 | ζ82ζ32 | ζ86ζ32 | ζ86ζ3 | ζ82ζ3 | 1 | ζ85ζ32 | ζ87ζ3 | ζ8ζ3 | ζ85ζ3 | ζ83ζ32 | ζ87ζ32 | ζ8ζ32 | ζ83ζ3 | -1 | linear of order 24 |
ρ18 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ6 | ζ65 | ζ85 | ζ83 | ζ87 | ζ8 | ζ82ζ3 | ζ86ζ3 | ζ86ζ32 | ζ82ζ32 | 1 | ζ85ζ3 | ζ87ζ32 | ζ8ζ32 | ζ85ζ32 | ζ83ζ3 | ζ87ζ3 | ζ8ζ3 | ζ83ζ32 | -1 | linear of order 24 |
ρ19 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ65 | ζ6 | ζ8 | ζ87 | ζ83 | ζ85 | ζ82ζ32 | ζ86ζ32 | ζ86ζ3 | ζ82ζ3 | 1 | ζ8ζ32 | ζ83ζ3 | ζ85ζ3 | ζ8ζ3 | ζ87ζ32 | ζ83ζ32 | ζ85ζ32 | ζ87ζ3 | -1 | linear of order 24 |
ρ20 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ65 | ζ6 | ζ83 | ζ85 | ζ8 | ζ87 | ζ86ζ32 | ζ82ζ32 | ζ82ζ3 | ζ86ζ3 | 1 | ζ83ζ32 | ζ8ζ3 | ζ87ζ3 | ζ83ζ3 | ζ85ζ32 | ζ8ζ32 | ζ87ζ32 | ζ85ζ3 | -1 | linear of order 24 |
ρ21 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ65 | ζ6 | ζ87 | ζ8 | ζ85 | ζ83 | ζ86ζ32 | ζ82ζ32 | ζ82ζ3 | ζ86ζ3 | 1 | ζ87ζ32 | ζ85ζ3 | ζ83ζ3 | ζ87ζ3 | ζ8ζ32 | ζ85ζ32 | ζ83ζ32 | ζ8ζ3 | -1 | linear of order 24 |
ρ22 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ6 | ζ65 | ζ83 | ζ85 | ζ8 | ζ87 | ζ86ζ3 | ζ82ζ3 | ζ82ζ32 | ζ86ζ32 | 1 | ζ83ζ3 | ζ8ζ32 | ζ87ζ32 | ζ83ζ32 | ζ85ζ3 | ζ8ζ3 | ζ87ζ3 | ζ85ζ32 | -1 | linear of order 24 |
ρ23 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ6 | ζ65 | ζ87 | ζ8 | ζ85 | ζ83 | ζ86ζ3 | ζ82ζ3 | ζ82ζ32 | ζ86ζ32 | 1 | ζ87ζ3 | ζ85ζ32 | ζ83ζ32 | ζ87ζ32 | ζ8ζ3 | ζ85ζ3 | ζ83ζ3 | ζ8ζ32 | -1 | linear of order 24 |
ρ24 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ6 | ζ65 | ζ8 | ζ87 | ζ83 | ζ85 | ζ82ζ3 | ζ86ζ3 | ζ86ζ32 | ζ82ζ32 | 1 | ζ8ζ3 | ζ83ζ32 | ζ85ζ32 | ζ8ζ32 | ζ87ζ3 | ζ83ζ3 | ζ85ζ3 | ζ87ζ32 | -1 | linear of order 24 |
ρ25 | 12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from F13 |
ρ26 | 12 | -12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | symplectic faithful, Schur index 2 |
(1 87 12 95 73 28 20 39 47 103 65 55 57)(2 13 74 21 48 66 58 88 96 29 40 104 56)(3 75 49 59 97 41 33 14 22 67 89 30 81)(4 50 98 34 23 90 82 76 60 42 15 68 31)(5 99 24 83 61 16 32 51 35 91 77 43 69)(6 25 62 9 36 78 70 100 84 17 52 92 44)(7 63 37 71 85 53 45 26 10 79 101 18 93)(8 38 86 46 11 102 94 64 72 54 27 80 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
G:=sub<Sym(104)| (1,87,12,95,73,28,20,39,47,103,65,55,57)(2,13,74,21,48,66,58,88,96,29,40,104,56)(3,75,49,59,97,41,33,14,22,67,89,30,81)(4,50,98,34,23,90,82,76,60,42,15,68,31)(5,99,24,83,61,16,32,51,35,91,77,43,69)(6,25,62,9,36,78,70,100,84,17,52,92,44)(7,63,37,71,85,53,45,26,10,79,101,18,93)(8,38,86,46,11,102,94,64,72,54,27,80,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)>;
G:=Group( (1,87,12,95,73,28,20,39,47,103,65,55,57)(2,13,74,21,48,66,58,88,96,29,40,104,56)(3,75,49,59,97,41,33,14,22,67,89,30,81)(4,50,98,34,23,90,82,76,60,42,15,68,31)(5,99,24,83,61,16,32,51,35,91,77,43,69)(6,25,62,9,36,78,70,100,84,17,52,92,44)(7,63,37,71,85,53,45,26,10,79,101,18,93)(8,38,86,46,11,102,94,64,72,54,27,80,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104) );
G=PermutationGroup([[(1,87,12,95,73,28,20,39,47,103,65,55,57),(2,13,74,21,48,66,58,88,96,29,40,104,56),(3,75,49,59,97,41,33,14,22,67,89,30,81),(4,50,98,34,23,90,82,76,60,42,15,68,31),(5,99,24,83,61,16,32,51,35,91,77,43,69),(6,25,62,9,36,78,70,100,84,17,52,92,44),(7,63,37,71,85,53,45,26,10,79,101,18,93),(8,38,86,46,11,102,94,64,72,54,27,80,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)]])
Matrix representation of C13⋊C24 ►in GL12(𝔽313)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 |
225 | 20 | 139 | 20 | 0 | 139 | 139 | 243 | 243 | 20 | 0 | 243 |
243 | 0 | 225 | 20 | 139 | 20 | 0 | 139 | 139 | 243 | 243 | 20 |
90 | 70 | 0 | 70 | 295 | 90 | 209 | 90 | 70 | 209 | 209 | 0 |
104 | 104 | 194 | 174 | 104 | 174 | 86 | 194 | 0 | 194 | 174 | 0 |
139 | 139 | 243 | 243 | 20 | 0 | 243 | 0 | 225 | 20 | 139 | 20 |
194 | 174 | 0 | 0 | 104 | 104 | 194 | 174 | 104 | 174 | 86 | 194 |
108 | 227 | 108 | 88 | 227 | 227 | 18 | 18 | 108 | 88 | 18 | 88 |
70 | 295 | 90 | 209 | 90 | 70 | 209 | 209 | 0 | 0 | 90 | 70 |
293 | 223 | 293 | 205 | 0 | 119 | 0 | 293 | 119 | 119 | 223 | 223 |
0 | 90 | 70 | 0 | 70 | 295 | 90 | 209 | 90 | 70 | 209 | 209 |
0 | 104 | 104 | 194 | 174 | 104 | 174 | 86 | 194 | 0 | 194 | 174 |
293 | 119 | 119 | 223 | 223 | 0 | 293 | 223 | 293 | 205 | 0 | 119 |
G:=sub<GL(12,GF(313))| [0,0,0,0,0,0,0,0,0,0,0,312,1,0,0,0,0,0,0,0,0,0,0,312,0,1,0,0,0,0,0,0,0,0,0,312,0,0,1,0,0,0,0,0,0,0,0,312,0,0,0,1,0,0,0,0,0,0,0,312,0,0,0,0,1,0,0,0,0,0,0,312,0,0,0,0,0,1,0,0,0,0,0,312,0,0,0,0,0,0,1,0,0,0,0,312,0,0,0,0,0,0,0,1,0,0,0,312,0,0,0,0,0,0,0,0,1,0,0,312,0,0,0,0,0,0,0,0,0,1,0,312,0,0,0,0,0,0,0,0,0,0,1,312],[225,243,90,104,139,194,108,70,293,0,0,293,20,0,70,104,139,174,227,295,223,90,104,119,139,225,0,194,243,0,108,90,293,70,104,119,20,20,70,174,243,0,88,209,205,0,194,223,0,139,295,104,20,104,227,90,0,70,174,223,139,20,90,174,0,104,227,70,119,295,104,0,139,0,209,86,243,194,18,209,0,90,174,293,243,139,90,194,0,174,18,209,293,209,86,223,243,139,70,0,225,104,108,0,119,90,194,293,20,243,209,194,20,174,88,0,119,70,0,205,0,243,209,174,139,86,18,90,223,209,194,0,243,20,0,0,20,194,88,70,223,209,174,119] >;
C13⋊C24 in GAP, Magma, Sage, TeX
C_{13}\rtimes C_{24}
% in TeX
G:=Group("C13:C24");
// GroupNames label
G:=SmallGroup(312,7);
// by ID
G=gap.SmallGroup(312,7);
# by ID
G:=PCGroup([5,-2,-3,-2,-2,-13,30,42,4804,909,1214]);
// Polycyclic
G:=Group<a,b|a^13=b^24=1,b*a*b^-1=a^2>;
// generators/relations
Export
Subgroup lattice of C13⋊C24 in TeX
Character table of C13⋊C24 in TeX