Copied to
clipboard

?

G = (C2×F5)⋊D4order 320 = 26·5

The semidirect product of C2×F5 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×F5)⋊2D4, (C2×D4)⋊9F5, (C2×D20)⋊7C4, (D4×C10)⋊4C4, C2.29(D4×F5), C232(C2×F5), D10⋊(C22⋊C4), C10.29(C4×D4), (C23×F5)⋊1C2, D10.95(C2×D4), D5.2C22≀C2, C5⋊(C23.23D4), D5.4(C4⋊D4), D10.3Q83C2, (C22×D5).68D4, C221(C22⋊F5), D10.48(C4○D4), (C22×F5).8C22, C22.95(C22×F5), (C23×D5).88C22, D5.5(C22.D4), (C22×D5).278C23, (C2×C4)⋊3(C2×F5), (C2×D4×D5).8C2, (C2×C20)⋊3(C2×C4), (C2×C5⋊D4)⋊4C4, (C2×C10)⋊(C22⋊C4), (C2×C22⋊F5)⋊3C2, (C22×C10)⋊3(C2×C4), (C2×C4×D5).61C22, C2.24(C2×C22⋊F5), (C2×Dic5)⋊16(C2×C4), (C22×D5)⋊11(C2×C4), C10.23(C2×C22⋊C4), (C2×C10).82(C22×C4), SmallGroup(320,1117)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×F5)⋊D4
C1C5D5D10C22×D5C22×F5C23×F5 — (C2×F5)⋊D4
C5C2×C10 — (C2×F5)⋊D4

Subgroups: 1354 in 286 conjugacy classes, 64 normal (32 characteristic)
C1, C2, C2 [×2], C2 [×10], C4 [×8], C22, C22 [×2], C22 [×30], C5, C2×C4, C2×C4 [×25], D4 [×8], C23 [×2], C23 [×17], D5 [×2], D5 [×2], D5 [×3], C10, C10 [×2], C10 [×3], C22⋊C4 [×6], C22×C4 [×11], C2×D4, C2×D4 [×7], C24 [×2], Dic5, C20, F5 [×6], D10 [×2], D10 [×6], D10 [×17], C2×C10, C2×C10 [×2], C2×C10 [×5], C2.C42 [×2], C2×C22⋊C4 [×3], C23×C4, C22×D4, C4×D5 [×2], D20 [×2], C2×Dic5, C5⋊D4 [×4], C2×C20, C5×D4 [×2], C2×F5 [×4], C2×F5 [×18], C22×D5 [×3], C22×D5 [×4], C22×D5 [×10], C22×C10 [×2], C23.23D4, C22⋊F5 [×6], C2×C4×D5, C2×D20, D4×D5 [×4], C2×C5⋊D4 [×2], D4×C10, C22×F5 [×4], C22×F5 [×6], C23×D5 [×2], D10.3Q8 [×2], C2×C22⋊F5, C2×C22⋊F5 [×2], C2×D4×D5, C23×F5, (C2×F5)⋊D4

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×8], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×4], C4○D4 [×2], F5, C2×C22⋊C4, C4×D4 [×2], C22≀C2, C4⋊D4 [×2], C22.D4, C2×F5 [×3], C23.23D4, C22⋊F5 [×2], C22×F5, D4×F5 [×2], C2×C22⋊F5, (C2×F5)⋊D4

Generators and relations
 G = < a,b,c,d,e | a2=b5=c4=d4=e2=1, ab=ba, dcd-1=ac=ca, ad=da, ae=ea, cbc-1=b3, bd=db, be=eb, ce=ec, ede=d-1 >

Smallest permutation representation
On 40 points
Generators in S40
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 19)(2 16 5 17)(3 18 4 20)(6 13 7 15)(8 12 10 11)(9 14)(21 28 22 30)(23 27 25 26)(24 29)(31 38 32 40)(33 37 35 36)(34 39)
(1 24 9 29)(2 25 10 30)(3 21 6 26)(4 22 7 27)(5 23 8 28)(11 31 16 36)(12 32 17 37)(13 33 18 38)(14 34 19 39)(15 35 20 40)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)

G:=sub<Sym(40)| (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,19)(2,16,5,17)(3,18,4,20)(6,13,7,15)(8,12,10,11)(9,14)(21,28,22,30)(23,27,25,26)(24,29)(31,38,32,40)(33,37,35,36)(34,39), (1,24,9,29)(2,25,10,30)(3,21,6,26)(4,22,7,27)(5,23,8,28)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)>;

G:=Group( (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,19)(2,16,5,17)(3,18,4,20)(6,13,7,15)(8,12,10,11)(9,14)(21,28,22,30)(23,27,25,26)(24,29)(31,38,32,40)(33,37,35,36)(34,39), (1,24,9,29)(2,25,10,30)(3,21,6,26)(4,22,7,27)(5,23,8,28)(11,31,16,36)(12,32,17,37)(13,33,18,38)(14,34,19,39)(15,35,20,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40) );

G=PermutationGroup([(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,19),(2,16,5,17),(3,18,4,20),(6,13,7,15),(8,12,10,11),(9,14),(21,28,22,30),(23,27,25,26),(24,29),(31,38,32,40),(33,37,35,36),(34,39)], [(1,24,9,29),(2,25,10,30),(3,21,6,26),(4,22,7,27),(5,23,8,28),(11,31,16,36),(12,32,17,37),(13,33,18,38),(14,34,19,39),(15,35,20,40)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)])

Matrix representation G ⊆ GL8(𝔽41)

400000000
040000000
004000000
000400000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00000100
00000010
00000001
000040404040
,
90000000
1432000000
009320000
000320000
00001000
00000001
00000100
000040404040
,
285000000
3213000000
004010000
003910000
00001000
00000100
00000010
00000001
,
10000000
01000000
001400000
000400000
00001000
00000100
00000010
00000001

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,40,0,0,0,0,0,1,0,40,0,0,0,0,0,0,1,40],[9,14,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,32,32,0,0,0,0,0,0,0,0,1,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0,40],[28,32,0,0,0,0,0,0,5,13,0,0,0,0,0,0,0,0,40,39,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M4A4B···4I4J···4N 5 10A10B10C10D10E10F10G20A20B
order1222222222222244···44···45101010101010102020
size11112245555101020410···1020···204444888888

38 irreducible representations

dim1111111122244448
type++++++++++++
imageC1C2C2C2C2C4C4C4D4D4C4○D4F5C2×F5C2×F5C22⋊F5D4×F5
kernel(C2×F5)⋊D4D10.3Q8C2×C22⋊F5C2×D4×D5C23×F5C2×D20C2×C5⋊D4D4×C10C2×F5C22×D5D10C2×D4C2×C4C23C22C2
# reps1231124244411242

In GAP, Magma, Sage, TeX

(C_2\times F_5)\rtimes D_4
% in TeX

G:=Group("(C2xF5):D4");
// GroupNames label

G:=SmallGroup(320,1117);
// by ID

G=gap.SmallGroup(320,1117);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^4=d^4=e^2=1,a*b=b*a,d*c*d^-1=a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^3,b*d=d*b,b*e=e*b,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽