Extensions 1→N→G→Q→1 with N=C2×Dic20 and Q=C2

Direct product G=N×Q with N=C2×Dic20 and Q=C2
dρLabelID
C22×Dic20320C2^2xDic20320,1414

Semidirect products G=N:Q with N=C2×Dic20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic20)⋊1C2 = C8.8D20φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):1C2320,323
(C2×Dic20)⋊2C2 = D20.32D4φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):2C2320,360
(C2×Dic20)⋊3C2 = C22⋊Dic20φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):3C2320,366
(C2×Dic20)⋊4C2 = Dic10.D4φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):4C2320,394
(C2×Dic20)⋊5C2 = D4.D20φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):5C2320,410
(C2×Dic20)⋊6C2 = D104Q16φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):6C2320,435
(C2×Dic20)⋊7C2 = C42.36D10φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):7C2320,472
(C2×Dic20)⋊8C2 = C2×C16⋊D5φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):8C2320,530
(C2×Dic20)⋊9C2 = C40.82D4φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):9C2320,743
(C2×Dic20)⋊10C2 = C8.D20φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):10C2320,342
(C2×Dic20)⋊11C2 = C16.D10φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20):11C2320,536
(C2×Dic20)⋊12C2 = C40.4D4φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):12C2320,764
(C2×Dic20)⋊13C2 = D4.5D20φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20):13C2320,770
(C2×Dic20)⋊14C2 = C2×C8.D10φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):14C2320,1419
(C2×Dic20)⋊15C2 = D4.13D20φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20):15C2320,1425
(C2×Dic20)⋊16C2 = D102Q16φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):16C2320,514
(C2×Dic20)⋊17C2 = C2×D8.D5φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):17C2320,775
(C2×Dic20)⋊18C2 = C40.22D4φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):18C2320,782
(C2×Dic20)⋊19C2 = C2×D83D5φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):19C2320,1428
(C2×Dic20)⋊20C2 = C2×D5×Q16φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):20C2320,1435
(C2×Dic20)⋊21C2 = C8.20D20φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20):21C2320,523
(C2×Dic20)⋊22C2 = C40.31C23φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20):22C2320,822
(C2×Dic20)⋊23C2 = D20.47D4φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20):23C2320,1443
(C2×Dic20)⋊24C2 = C8.2D20φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):24C2320,495
(C2×Dic20)⋊25C2 = C40.31D4φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):25C2320,794
(C2×Dic20)⋊26C2 = C2×SD16⋊D5φ: C2/C1C2 ⊆ Out C2×Dic20160(C2xDic20):26C2320,1432
(C2×Dic20)⋊27C2 = C2×D407C2φ: trivial image160(C2xDic20):27C2320,1413

Non-split extensions G=N.Q with N=C2×Dic20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic20).1C2 = C40.78D4φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).1C2320,61
(C2×Dic20).2C2 = C204Q16φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).2C2320,326
(C2×Dic20).3C2 = Dic5⋊Q16φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).3C2320,420
(C2×Dic20).4C2 = C4⋊Dic20φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).4C2320,476
(C2×Dic20).5C2 = C2×Dic40φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).5C2320,532
(C2×Dic20).6C2 = C20.4D8φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20).6C2320,75
(C2×Dic20).7C2 = Dic209C4φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).7C2320,343
(C2×Dic20).8C2 = C10.Q32φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).8C2320,50
(C2×Dic20).9C2 = Dic55Q16φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).9C2320,500
(C2×Dic20).10C2 = C2×C5⋊Q32φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).10C2320,807
(C2×Dic20).11C2 = C40.26D4φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).11C2320,808
(C2×Dic20).12C2 = C40.8D4φ: C2/C1C2 ⊆ Out C2×Dic201604-(C2xDic20).12C2320,54
(C2×Dic20).13C2 = Dic2015C4φ: C2/C1C2 ⊆ Out C2×Dic20320(C2xDic20).13C2320,480
(C2×Dic20).14C2 = C4×Dic20φ: trivial image320(C2xDic20).14C2320,325

׿
×
𝔽