direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D40⋊7C2, D40⋊23C22, C40.62C23, C20.56C24, C23.29D20, D20.21C23, Dic20⋊20C22, Dic10.20C23, (C2×C8)⋊34D10, (C22×C8)⋊8D5, (C2×D40)⋊27C2, C10⋊1(C4○D8), C4.46(C2×D20), (C2×C40)⋊45C22, (C22×C40)⋊12C2, (C2×C4).101D20, (C2×C20).404D4, C20.291(C2×D4), C4.53(C23×D5), C8.51(C22×D5), (C2×Dic20)⋊27C2, C4○D20⋊16C22, C40⋊C2⋊22C22, C2.25(C22×D20), C10.23(C22×D4), C22.71(C2×D20), (C2×C20).797C23, (C22×C10).146D4, (C22×C4).444D10, (C2×D20).237C22, (C22×C20).545C22, (C2×Dic10).265C22, C5⋊1(C2×C4○D8), (C2×C4○D20)⋊13C2, (C2×C40⋊C2)⋊33C2, (C2×C10).179(C2×D4), (C2×C4).737(C22×D5), SmallGroup(320,1413)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D40⋊7C2
G = < a,b,c,d | a2=b40=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd=b20c >
Subgroups: 1054 in 266 conjugacy classes, 111 normal (27 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C2×C8, C2×C8, D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C40, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C2×C4○D8, C40⋊C2, D40, Dic20, C2×C40, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, C2×C40⋊C2, C2×D40, D40⋊7C2, C2×Dic20, C22×C40, C2×C4○D20, C2×D40⋊7C2
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C4○D8, C22×D4, D20, C22×D5, C2×C4○D8, C2×D20, C23×D5, D40⋊7C2, C22×D20, C2×D40⋊7C2
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 100)(8 101)(9 102)(10 103)(11 104)(12 105)(13 106)(14 107)(15 108)(16 109)(17 110)(18 111)(19 112)(20 113)(21 114)(22 115)(23 116)(24 117)(25 118)(26 119)(27 120)(28 81)(29 82)(30 83)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 91)(39 92)(40 93)(41 159)(42 160)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 127)(50 128)(51 129)(52 130)(53 131)(54 132)(55 133)(56 134)(57 135)(58 136)(59 137)(60 138)(61 139)(62 140)(63 141)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 148)(71 149)(72 150)(73 151)(74 152)(75 153)(76 154)(77 155)(78 156)(79 157)(80 158)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 93)(2 92)(3 91)(4 90)(5 89)(6 88)(7 87)(8 86)(9 85)(10 84)(11 83)(12 82)(13 81)(14 120)(15 119)(16 118)(17 117)(18 116)(19 115)(20 114)(21 113)(22 112)(23 111)(24 110)(25 109)(26 108)(27 107)(28 106)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 98)(37 97)(38 96)(39 95)(40 94)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 160)(50 159)(51 158)(52 157)(53 156)(54 155)(55 154)(56 153)(57 152)(58 151)(59 150)(60 149)(61 148)(62 147)(63 146)(64 145)(65 144)(66 143)(67 142)(68 141)(69 140)(70 139)(71 138)(72 137)(73 136)(74 135)(75 134)(76 133)(77 132)(78 131)(79 130)(80 129)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(81 141)(82 142)(83 143)(84 144)(85 145)(86 146)(87 147)(88 148)(89 149)(90 150)(91 151)(92 152)(93 153)(94 154)(95 155)(96 156)(97 157)(98 158)(99 159)(100 160)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(111 131)(112 132)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)
G:=sub<Sym(160)| (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,159)(42,160)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,93)(2,92)(3,91)(4,90)(5,89)(6,88)(7,87)(8,86)(9,85)(10,84)(11,83)(12,82)(13,81)(14,120)(15,119)(16,118)(17,117)(18,116)(19,115)(20,114)(21,113)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129), (1,76)(2,77)(3,78)(4,79)(5,80)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140)>;
G:=Group( (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,106)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,159)(42,160)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,93)(2,92)(3,91)(4,90)(5,89)(6,88)(7,87)(8,86)(9,85)(10,84)(11,83)(12,82)(13,81)(14,120)(15,119)(16,118)(17,117)(18,116)(19,115)(20,114)(21,113)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,160)(50,159)(51,158)(52,157)(53,156)(54,155)(55,154)(56,153)(57,152)(58,151)(59,150)(60,149)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,140)(70,139)(71,138)(72,137)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129), (1,76)(2,77)(3,78)(4,79)(5,80)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140) );
G=PermutationGroup([[(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,100),(8,101),(9,102),(10,103),(11,104),(12,105),(13,106),(14,107),(15,108),(16,109),(17,110),(18,111),(19,112),(20,113),(21,114),(22,115),(23,116),(24,117),(25,118),(26,119),(27,120),(28,81),(29,82),(30,83),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,91),(39,92),(40,93),(41,159),(42,160),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,127),(50,128),(51,129),(52,130),(53,131),(54,132),(55,133),(56,134),(57,135),(58,136),(59,137),(60,138),(61,139),(62,140),(63,141),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,148),(71,149),(72,150),(73,151),(74,152),(75,153),(76,154),(77,155),(78,156),(79,157),(80,158)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,93),(2,92),(3,91),(4,90),(5,89),(6,88),(7,87),(8,86),(9,85),(10,84),(11,83),(12,82),(13,81),(14,120),(15,119),(16,118),(17,117),(18,116),(19,115),(20,114),(21,113),(22,112),(23,111),(24,110),(25,109),(26,108),(27,107),(28,106),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,98),(37,97),(38,96),(39,95),(40,94),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,160),(50,159),(51,158),(52,157),(53,156),(54,155),(55,154),(56,153),(57,152),(58,151),(59,150),(60,149),(61,148),(62,147),(63,146),(64,145),(65,144),(66,143),(67,142),(68,141),(69,140),(70,139),(71,138),(72,137),(73,136),(74,135),(75,134),(76,133),(77,132),(78,131),(79,130),(80,129)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(81,141),(82,142),(83,143),(84,144),(85,145),(86,146),(87,147),(88,148),(89,149),(90,150),(91,151),(92,152),(93,153),(94,154),(95,155),(96,156),(97,157),(98,158),(99,159),(100,160),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(111,131),(112,132),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140)]])
92 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | ··· | 8H | 10A | ··· | 10N | 20A | ··· | 20P | 40A | ··· | 40AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 20 | 20 | 20 | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | C4○D8 | D20 | D20 | D40⋊7C2 |
kernel | C2×D40⋊7C2 | C2×C40⋊C2 | C2×D40 | D40⋊7C2 | C2×Dic20 | C22×C40 | C2×C4○D20 | C2×C20 | C22×C10 | C22×C8 | C2×C8 | C22×C4 | C10 | C2×C4 | C23 | C2 |
# reps | 1 | 2 | 1 | 8 | 1 | 1 | 2 | 3 | 1 | 2 | 12 | 2 | 8 | 12 | 4 | 32 |
Matrix representation of C2×D40⋊7C2 ►in GL3(𝔽41) generated by
40 | 0 | 0 |
0 | 40 | 0 |
0 | 0 | 40 |
1 | 0 | 0 |
0 | 8 | 6 |
0 | 30 | 38 |
1 | 0 | 0 |
0 | 29 | 26 |
0 | 15 | 12 |
1 | 0 | 0 |
0 | 18 | 1 |
0 | 5 | 23 |
G:=sub<GL(3,GF(41))| [40,0,0,0,40,0,0,0,40],[1,0,0,0,8,30,0,6,38],[1,0,0,0,29,15,0,26,12],[1,0,0,0,18,5,0,1,23] >;
C2×D40⋊7C2 in GAP, Magma, Sage, TeX
C_2\times D_{40}\rtimes_7C_2
% in TeX
G:=Group("C2xD40:7C2");
// GroupNames label
G:=SmallGroup(320,1413);
// by ID
G=gap.SmallGroup(320,1413);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,80,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^40=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d=b^20*c>;
// generators/relations