Copied to
clipboard

G = C2×D5×Q16order 320 = 26·5

Direct product of C2, D5 and Q16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D5×Q16, C40.33C23, C20.10C24, Dic2015C22, Dic10.6C23, C102(C2×Q16), C4.46(D4×D5), C52(C22×Q16), (C10×Q16)⋊7C2, (C4×D5).69D4, C20.85(C2×D4), (C2×C8).246D10, (C5×Q16)⋊8C22, C5⋊Q168C22, C8.39(C22×D5), C4.10(C23×D5), (C2×Dic20)⋊20C2, D10.113(C2×D4), (Q8×D5).8C22, (C5×Q8).4C23, Q8.4(C22×D5), (C2×C40).98C22, C52C8.22C23, (C2×Q8).152D10, Dic5.25(C2×D4), (C4×D5).63C23, (C8×D5).44C22, C22.142(D4×D5), (C2×C20).527C23, (C2×Dic5).168D4, (C22×D5).160D4, C10.111(C22×D4), (Q8×C10).149C22, (C2×Dic10).204C22, (D5×C2×C8).6C2, C2.84(C2×D4×D5), (C2×Q8×D5).8C2, (C2×C5⋊Q16)⋊27C2, (C2×C10).400(C2×D4), (C2×C4×D5).329C22, (C2×C4).615(C22×D5), (C2×C52C8).293C22, SmallGroup(320,1435)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D5×Q16
C1C5C10C20C4×D5C2×C4×D5C2×Q8×D5 — C2×D5×Q16
C5C10C20 — C2×D5×Q16
C1C22C2×C4C2×Q16

Generators and relations for C2×D5×Q16
 G = < a,b,c,d,e | a2=b5=c2=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 862 in 258 conjugacy classes, 111 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, Q8, Q8, C23, D5, C10, C10, C2×C8, C2×C8, Q16, Q16, C22×C4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, C22×C8, C2×Q16, C2×Q16, C22×Q8, C52C8, C40, Dic10, Dic10, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22×Q16, C8×D5, Dic20, C2×C52C8, C5⋊Q16, C2×C40, C5×Q16, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, Q8×D5, Q8×D5, Q8×C10, D5×C2×C8, C2×Dic20, D5×Q16, C2×C5⋊Q16, C10×Q16, C2×Q8×D5, C2×D5×Q16
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, C24, D10, C2×Q16, C22×D4, C22×D5, C22×Q16, D4×D5, C23×D5, D5×Q16, C2×D4×D5, C2×D5×Q16

Smallest permutation representation of C2×D5×Q16
On 160 points
Generators in S160
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 33)(9 108)(10 109)(11 110)(12 111)(13 112)(14 105)(15 106)(16 107)(17 99)(18 100)(19 101)(20 102)(21 103)(22 104)(23 97)(24 98)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 73)(32 74)(41 147)(42 148)(43 149)(44 150)(45 151)(46 152)(47 145)(48 146)(49 143)(50 144)(51 137)(52 138)(53 139)(54 140)(55 141)(56 142)(57 153)(58 154)(59 155)(60 156)(61 157)(62 158)(63 159)(64 160)(65 118)(66 119)(67 120)(68 113)(69 114)(70 115)(71 116)(72 117)(81 126)(82 127)(83 128)(84 121)(85 122)(86 123)(87 124)(88 125)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)
(1 138 150 71 12)(2 139 151 72 13)(3 140 152 65 14)(4 141 145 66 15)(5 142 146 67 16)(6 143 147 68 9)(7 144 148 69 10)(8 137 149 70 11)(17 80 159 96 87)(18 73 160 89 88)(19 74 153 90 81)(20 75 154 91 82)(21 76 155 92 83)(22 77 156 93 84)(23 78 157 94 85)(24 79 158 95 86)(25 58 131 127 102)(26 59 132 128 103)(27 60 133 121 104)(28 61 134 122 97)(29 62 135 123 98)(30 63 136 124 99)(31 64 129 125 100)(32 57 130 126 101)(33 51 43 115 110)(34 52 44 116 111)(35 53 45 117 112)(36 54 46 118 105)(37 55 47 119 106)(38 56 48 120 107)(39 49 41 113 108)(40 50 42 114 109)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)(17 96)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 57)(33 110)(34 111)(35 112)(36 105)(37 106)(38 107)(39 108)(40 109)(49 113)(50 114)(51 115)(52 116)(53 117)(54 118)(55 119)(56 120)(65 140)(66 141)(67 142)(68 143)(69 144)(70 137)(71 138)(72 139)(73 160)(74 153)(75 154)(76 155)(77 156)(78 157)(79 158)(80 159)(97 134)(98 135)(99 136)(100 129)(101 130)(102 131)(103 132)(104 133)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 58 5 62)(2 57 6 61)(3 64 7 60)(4 63 8 59)(9 28 13 32)(10 27 14 31)(11 26 15 30)(12 25 16 29)(17 115 21 119)(18 114 22 118)(19 113 23 117)(20 120 24 116)(33 155 37 159)(34 154 38 158)(35 153 39 157)(36 160 40 156)(41 85 45 81)(42 84 46 88)(43 83 47 87)(44 82 48 86)(49 94 53 90)(50 93 54 89)(51 92 55 96)(52 91 56 95)(65 100 69 104)(66 99 70 103)(67 98 71 102)(68 97 72 101)(73 109 77 105)(74 108 78 112)(75 107 79 111)(76 106 80 110)(121 152 125 148)(122 151 126 147)(123 150 127 146)(124 149 128 145)(129 144 133 140)(130 143 134 139)(131 142 135 138)(132 141 136 137)

G:=sub<Sym(160)| (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,33)(9,108)(10,109)(11,110)(12,111)(13,112)(14,105)(15,106)(16,107)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,97)(24,98)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,145)(48,146)(49,143)(50,144)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,118)(66,119)(67,120)(68,113)(69,114)(70,115)(71,116)(72,117)(81,126)(82,127)(83,128)(84,121)(85,122)(86,123)(87,124)(88,125)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136), (1,138,150,71,12)(2,139,151,72,13)(3,140,152,65,14)(4,141,145,66,15)(5,142,146,67,16)(6,143,147,68,9)(7,144,148,69,10)(8,137,149,70,11)(17,80,159,96,87)(18,73,160,89,88)(19,74,153,90,81)(20,75,154,91,82)(21,76,155,92,83)(22,77,156,93,84)(23,78,157,94,85)(24,79,158,95,86)(25,58,131,127,102)(26,59,132,128,103)(27,60,133,121,104)(28,61,134,122,97)(29,62,135,123,98)(30,63,136,124,99)(31,64,129,125,100)(32,57,130,126,101)(33,51,43,115,110)(34,52,44,116,111)(35,53,45,117,112)(36,54,46,118,105)(37,55,47,119,106)(38,56,48,120,107)(39,49,41,113,108)(40,50,42,114,109), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,96)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,110)(34,111)(35,112)(36,105)(37,106)(38,107)(39,108)(40,109)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(65,140)(66,141)(67,142)(68,143)(69,144)(70,137)(71,138)(72,139)(73,160)(74,153)(75,154)(76,155)(77,156)(78,157)(79,158)(80,159)(97,134)(98,135)(99,136)(100,129)(101,130)(102,131)(103,132)(104,133), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,28,13,32)(10,27,14,31)(11,26,15,30)(12,25,16,29)(17,115,21,119)(18,114,22,118)(19,113,23,117)(20,120,24,116)(33,155,37,159)(34,154,38,158)(35,153,39,157)(36,160,40,156)(41,85,45,81)(42,84,46,88)(43,83,47,87)(44,82,48,86)(49,94,53,90)(50,93,54,89)(51,92,55,96)(52,91,56,95)(65,100,69,104)(66,99,70,103)(67,98,71,102)(68,97,72,101)(73,109,77,105)(74,108,78,112)(75,107,79,111)(76,106,80,110)(121,152,125,148)(122,151,126,147)(123,150,127,146)(124,149,128,145)(129,144,133,140)(130,143,134,139)(131,142,135,138)(132,141,136,137)>;

G:=Group( (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,33)(9,108)(10,109)(11,110)(12,111)(13,112)(14,105)(15,106)(16,107)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,97)(24,98)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,145)(48,146)(49,143)(50,144)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,118)(66,119)(67,120)(68,113)(69,114)(70,115)(71,116)(72,117)(81,126)(82,127)(83,128)(84,121)(85,122)(86,123)(87,124)(88,125)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136), (1,138,150,71,12)(2,139,151,72,13)(3,140,152,65,14)(4,141,145,66,15)(5,142,146,67,16)(6,143,147,68,9)(7,144,148,69,10)(8,137,149,70,11)(17,80,159,96,87)(18,73,160,89,88)(19,74,153,90,81)(20,75,154,91,82)(21,76,155,92,83)(22,77,156,93,84)(23,78,157,94,85)(24,79,158,95,86)(25,58,131,127,102)(26,59,132,128,103)(27,60,133,121,104)(28,61,134,122,97)(29,62,135,123,98)(30,63,136,124,99)(31,64,129,125,100)(32,57,130,126,101)(33,51,43,115,110)(34,52,44,116,111)(35,53,45,117,112)(36,54,46,118,105)(37,55,47,119,106)(38,56,48,120,107)(39,49,41,113,108)(40,50,42,114,109), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,96)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(33,110)(34,111)(35,112)(36,105)(37,106)(38,107)(39,108)(40,109)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(65,140)(66,141)(67,142)(68,143)(69,144)(70,137)(71,138)(72,139)(73,160)(74,153)(75,154)(76,155)(77,156)(78,157)(79,158)(80,159)(97,134)(98,135)(99,136)(100,129)(101,130)(102,131)(103,132)(104,133), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,28,13,32)(10,27,14,31)(11,26,15,30)(12,25,16,29)(17,115,21,119)(18,114,22,118)(19,113,23,117)(20,120,24,116)(33,155,37,159)(34,154,38,158)(35,153,39,157)(36,160,40,156)(41,85,45,81)(42,84,46,88)(43,83,47,87)(44,82,48,86)(49,94,53,90)(50,93,54,89)(51,92,55,96)(52,91,56,95)(65,100,69,104)(66,99,70,103)(67,98,71,102)(68,97,72,101)(73,109,77,105)(74,108,78,112)(75,107,79,111)(76,106,80,110)(121,152,125,148)(122,151,126,147)(123,150,127,146)(124,149,128,145)(129,144,133,140)(130,143,134,139)(131,142,135,138)(132,141,136,137) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,33),(9,108),(10,109),(11,110),(12,111),(13,112),(14,105),(15,106),(16,107),(17,99),(18,100),(19,101),(20,102),(21,103),(22,104),(23,97),(24,98),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,73),(32,74),(41,147),(42,148),(43,149),(44,150),(45,151),(46,152),(47,145),(48,146),(49,143),(50,144),(51,137),(52,138),(53,139),(54,140),(55,141),(56,142),(57,153),(58,154),(59,155),(60,156),(61,157),(62,158),(63,159),(64,160),(65,118),(66,119),(67,120),(68,113),(69,114),(70,115),(71,116),(72,117),(81,126),(82,127),(83,128),(84,121),(85,122),(86,123),(87,124),(88,125),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136)], [(1,138,150,71,12),(2,139,151,72,13),(3,140,152,65,14),(4,141,145,66,15),(5,142,146,67,16),(6,143,147,68,9),(7,144,148,69,10),(8,137,149,70,11),(17,80,159,96,87),(18,73,160,89,88),(19,74,153,90,81),(20,75,154,91,82),(21,76,155,92,83),(22,77,156,93,84),(23,78,157,94,85),(24,79,158,95,86),(25,58,131,127,102),(26,59,132,128,103),(27,60,133,121,104),(28,61,134,122,97),(29,62,135,123,98),(30,63,136,124,99),(31,64,129,125,100),(32,57,130,126,101),(33,51,43,115,110),(34,52,44,116,111),(35,53,45,117,112),(36,54,46,118,105),(37,55,47,119,106),(38,56,48,120,107),(39,49,41,113,108),(40,50,42,114,109)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11),(17,96),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,57),(33,110),(34,111),(35,112),(36,105),(37,106),(38,107),(39,108),(40,109),(49,113),(50,114),(51,115),(52,116),(53,117),(54,118),(55,119),(56,120),(65,140),(66,141),(67,142),(68,143),(69,144),(70,137),(71,138),(72,139),(73,160),(74,153),(75,154),(76,155),(77,156),(78,157),(79,158),(80,159),(97,134),(98,135),(99,136),(100,129),(101,130),(102,131),(103,132),(104,133)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,58,5,62),(2,57,6,61),(3,64,7,60),(4,63,8,59),(9,28,13,32),(10,27,14,31),(11,26,15,30),(12,25,16,29),(17,115,21,119),(18,114,22,118),(19,113,23,117),(20,120,24,116),(33,155,37,159),(34,154,38,158),(35,153,39,157),(36,160,40,156),(41,85,45,81),(42,84,46,88),(43,83,47,87),(44,82,48,86),(49,94,53,90),(50,93,54,89),(51,92,55,96),(52,91,56,95),(65,100,69,104),(66,99,70,103),(67,98,71,102),(68,97,72,101),(73,109,77,105),(74,108,78,112),(75,107,79,111),(76,106,80,110),(121,152,125,148),(122,151,126,147),(123,150,127,146),(124,149,128,145),(129,144,133,140),(130,143,134,139),(131,142,135,138),(132,141,136,137)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222222444444444444558888888810···102020202020···2040···40
size11115555224444101020202020222222101010102···244448···84···4

56 irreducible representations

dim111111122222222444
type+++++++++++-+++++-
imageC1C2C2C2C2C2C2D4D4D4D5Q16D10D10D10D4×D5D4×D5D5×Q16
kernelC2×D5×Q16D5×C2×C8C2×Dic20D5×Q16C2×C5⋊Q16C10×Q16C2×Q8×D5C4×D5C2×Dic5C22×D5C2×Q16D10C2×C8Q16C2×Q8C4C22C2
# reps111821221128284228

Matrix representation of C2×D5×Q16 in GL4(𝔽41) generated by

1000
0100
00400
00040
,
1000
0100
00401
00337
,
1000
0100
00400
00331
,
243500
7000
00400
00040
,
374000
17400
00400
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,33,0,0,1,7],[1,0,0,0,0,1,0,0,0,0,40,33,0,0,0,1],[24,7,0,0,35,0,0,0,0,0,40,0,0,0,0,40],[37,17,0,0,40,4,0,0,0,0,40,0,0,0,0,40] >;

C2×D5×Q16 in GAP, Magma, Sage, TeX

C_2\times D_5\times Q_{16}
% in TeX

G:=Group("C2xD5xQ16");
// GroupNames label

G:=SmallGroup(320,1435);
// by ID

G=gap.SmallGroup(320,1435);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽