Copied to
clipboard

G = C40.31D4order 320 = 26·5

31st non-split extension by C40 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.31D4, C408C45C2, C4.23(D4×D5), C52C8.9D4, (C2×C8).89D10, C54(C8.2D4), C8.3(C5⋊D4), (C2×D4).70D10, C20.174(C2×D4), (C2×Q8).52D10, (C2×SD16).2D5, (C2×Dic20)⋊25C2, Dic5⋊Q84C2, (C2×Dic5).78D4, (C10×SD16).2C2, C22.264(D4×D5), C2.20(C20⋊D4), C10.29(C41D4), (C2×C40).114C22, (C2×C20).444C23, C20.17D4.8C2, (D4×C10).93C22, (Q8×C10).74C22, C2.28(SD16⋊D5), C10.48(C8.C22), (C4×Dic5).57C22, (C2×Dic10).129C22, C4.7(C2×C5⋊D4), (C2×C5⋊Q16)⋊17C2, (C2×D4.D5).9C2, (C2×C10).356(C2×D4), (C2×C4).533(C22×D5), (C2×C52C8).156C22, SmallGroup(320,794)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C40.31D4
C1C5C10C20C2×C20C4×Dic5Dic5⋊Q8 — C40.31D4
C5C10C2×C20 — C40.31D4
C1C22C2×C4C2×SD16

Generators and relations for C40.31D4
 G = < a,b,c | a40=b4=1, c2=a20, bab-1=a29, cac-1=a-1, cbc-1=b-1 >

Subgroups: 462 in 124 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C8⋊C4, C4.4D4, C4⋊Q8, C2×SD16, C2×SD16, C2×Q16, C52C8, C40, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C8.2D4, Dic20, C2×C52C8, C4×Dic5, C10.D4, D4.D5, C5⋊Q16, C23.D5, C2×C40, C5×SD16, C2×Dic10, D4×C10, Q8×C10, C408C4, C2×Dic20, C2×D4.D5, C20.17D4, C2×C5⋊Q16, Dic5⋊Q8, C10×SD16, C40.31D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C41D4, C8.C22, C5⋊D4, C22×D5, C8.2D4, D4×D5, C2×C5⋊D4, SD16⋊D5, C20⋊D4, C40.31D4

Smallest permutation representation of C40.31D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 99 74 136)(2 88 75 125)(3 117 76 154)(4 106 77 143)(5 95 78 132)(6 84 79 121)(7 113 80 150)(8 102 41 139)(9 91 42 128)(10 120 43 157)(11 109 44 146)(12 98 45 135)(13 87 46 124)(14 116 47 153)(15 105 48 142)(16 94 49 131)(17 83 50 160)(18 112 51 149)(19 101 52 138)(20 90 53 127)(21 119 54 156)(22 108 55 145)(23 97 56 134)(24 86 57 123)(25 115 58 152)(26 104 59 141)(27 93 60 130)(28 82 61 159)(29 111 62 148)(30 100 63 137)(31 89 64 126)(32 118 65 155)(33 107 66 144)(34 96 67 133)(35 85 68 122)(36 114 69 151)(37 103 70 140)(38 92 71 129)(39 81 72 158)(40 110 73 147)
(1 151 21 131)(2 150 22 130)(3 149 23 129)(4 148 24 128)(5 147 25 127)(6 146 26 126)(7 145 27 125)(8 144 28 124)(9 143 29 123)(10 142 30 122)(11 141 31 121)(12 140 32 160)(13 139 33 159)(14 138 34 158)(15 137 35 157)(16 136 36 156)(17 135 37 155)(18 134 38 154)(19 133 39 153)(20 132 40 152)(41 107 61 87)(42 106 62 86)(43 105 63 85)(44 104 64 84)(45 103 65 83)(46 102 66 82)(47 101 67 81)(48 100 68 120)(49 99 69 119)(50 98 70 118)(51 97 71 117)(52 96 72 116)(53 95 73 115)(54 94 74 114)(55 93 75 113)(56 92 76 112)(57 91 77 111)(58 90 78 110)(59 89 79 109)(60 88 80 108)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,99,74,136)(2,88,75,125)(3,117,76,154)(4,106,77,143)(5,95,78,132)(6,84,79,121)(7,113,80,150)(8,102,41,139)(9,91,42,128)(10,120,43,157)(11,109,44,146)(12,98,45,135)(13,87,46,124)(14,116,47,153)(15,105,48,142)(16,94,49,131)(17,83,50,160)(18,112,51,149)(19,101,52,138)(20,90,53,127)(21,119,54,156)(22,108,55,145)(23,97,56,134)(24,86,57,123)(25,115,58,152)(26,104,59,141)(27,93,60,130)(28,82,61,159)(29,111,62,148)(30,100,63,137)(31,89,64,126)(32,118,65,155)(33,107,66,144)(34,96,67,133)(35,85,68,122)(36,114,69,151)(37,103,70,140)(38,92,71,129)(39,81,72,158)(40,110,73,147), (1,151,21,131)(2,150,22,130)(3,149,23,129)(4,148,24,128)(5,147,25,127)(6,146,26,126)(7,145,27,125)(8,144,28,124)(9,143,29,123)(10,142,30,122)(11,141,31,121)(12,140,32,160)(13,139,33,159)(14,138,34,158)(15,137,35,157)(16,136,36,156)(17,135,37,155)(18,134,38,154)(19,133,39,153)(20,132,40,152)(41,107,61,87)(42,106,62,86)(43,105,63,85)(44,104,64,84)(45,103,65,83)(46,102,66,82)(47,101,67,81)(48,100,68,120)(49,99,69,119)(50,98,70,118)(51,97,71,117)(52,96,72,116)(53,95,73,115)(54,94,74,114)(55,93,75,113)(56,92,76,112)(57,91,77,111)(58,90,78,110)(59,89,79,109)(60,88,80,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,99,74,136)(2,88,75,125)(3,117,76,154)(4,106,77,143)(5,95,78,132)(6,84,79,121)(7,113,80,150)(8,102,41,139)(9,91,42,128)(10,120,43,157)(11,109,44,146)(12,98,45,135)(13,87,46,124)(14,116,47,153)(15,105,48,142)(16,94,49,131)(17,83,50,160)(18,112,51,149)(19,101,52,138)(20,90,53,127)(21,119,54,156)(22,108,55,145)(23,97,56,134)(24,86,57,123)(25,115,58,152)(26,104,59,141)(27,93,60,130)(28,82,61,159)(29,111,62,148)(30,100,63,137)(31,89,64,126)(32,118,65,155)(33,107,66,144)(34,96,67,133)(35,85,68,122)(36,114,69,151)(37,103,70,140)(38,92,71,129)(39,81,72,158)(40,110,73,147), (1,151,21,131)(2,150,22,130)(3,149,23,129)(4,148,24,128)(5,147,25,127)(6,146,26,126)(7,145,27,125)(8,144,28,124)(9,143,29,123)(10,142,30,122)(11,141,31,121)(12,140,32,160)(13,139,33,159)(14,138,34,158)(15,137,35,157)(16,136,36,156)(17,135,37,155)(18,134,38,154)(19,133,39,153)(20,132,40,152)(41,107,61,87)(42,106,62,86)(43,105,63,85)(44,104,64,84)(45,103,65,83)(46,102,66,82)(47,101,67,81)(48,100,68,120)(49,99,69,119)(50,98,70,118)(51,97,71,117)(52,96,72,116)(53,95,73,115)(54,94,74,114)(55,93,75,113)(56,92,76,112)(57,91,77,111)(58,90,78,110)(59,89,79,109)(60,88,80,108) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,99,74,136),(2,88,75,125),(3,117,76,154),(4,106,77,143),(5,95,78,132),(6,84,79,121),(7,113,80,150),(8,102,41,139),(9,91,42,128),(10,120,43,157),(11,109,44,146),(12,98,45,135),(13,87,46,124),(14,116,47,153),(15,105,48,142),(16,94,49,131),(17,83,50,160),(18,112,51,149),(19,101,52,138),(20,90,53,127),(21,119,54,156),(22,108,55,145),(23,97,56,134),(24,86,57,123),(25,115,58,152),(26,104,59,141),(27,93,60,130),(28,82,61,159),(29,111,62,148),(30,100,63,137),(31,89,64,126),(32,118,65,155),(33,107,66,144),(34,96,67,133),(35,85,68,122),(36,114,69,151),(37,103,70,140),(38,92,71,129),(39,81,72,158),(40,110,73,147)], [(1,151,21,131),(2,150,22,130),(3,149,23,129),(4,148,24,128),(5,147,25,127),(6,146,26,126),(7,145,27,125),(8,144,28,124),(9,143,29,123),(10,142,30,122),(11,141,31,121),(12,140,32,160),(13,139,33,159),(14,138,34,158),(15,137,35,157),(16,136,36,156),(17,135,37,155),(18,134,38,154),(19,133,39,153),(20,132,40,152),(41,107,61,87),(42,106,62,86),(43,105,63,85),(44,104,64,84),(45,103,65,83),(46,102,66,82),(47,101,67,81),(48,100,68,120),(49,99,69,119),(50,98,70,118),(51,97,71,117),(52,96,72,116),(53,95,73,115),(54,94,74,114),(55,93,75,113),(56,92,76,112),(57,91,77,111),(58,90,78,110),(59,89,79,109),(60,88,80,108)]])

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222444444455888810···1010101010202020202020202040···40
size1111822820204040224420202···28888444488884···4

44 irreducible representations

dim11111111222222224444
type+++++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D4D5D10D10D10C5⋊D4C8.C22D4×D5D4×D5SD16⋊D5
kernelC40.31D4C408C4C2×Dic20C2×D4.D5C20.17D4C2×C5⋊Q16Dic5⋊Q8C10×SD16C52C8C40C2×Dic5C2×SD16C2×C8C2×D4C2×Q8C8C10C4C22C2
# reps11111111222222282228

Matrix representation of C40.31D4 in GL6(𝔽41)

1690000
17250000
0000360
00503636
002633238
0000288
,
1690000
17250000
00272700
00171400
002902712
0013272814
,
100000
1400000
0080233
001002131
00252100
004036233

G:=sub<GL(6,GF(41))| [16,17,0,0,0,0,9,25,0,0,0,0,0,0,0,5,26,0,0,0,0,0,33,0,0,0,36,36,23,28,0,0,0,36,8,8],[16,17,0,0,0,0,9,25,0,0,0,0,0,0,27,17,29,13,0,0,27,14,0,27,0,0,0,0,27,28,0,0,0,0,12,14],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,8,10,25,40,0,0,0,0,21,36,0,0,2,21,0,2,0,0,33,31,0,33] >;

C40.31D4 in GAP, Magma, Sage, TeX

C_{40}._{31}D_4
% in TeX

G:=Group("C40.31D4");
// GroupNames label

G:=SmallGroup(320,794);
// by ID

G=gap.SmallGroup(320,794);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,253,232,1094,135,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=1,c^2=a^20,b*a*b^-1=a^29,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽