Copied to
clipboard

G = D104Q16order 320 = 26·5

1st semidirect product of D10 and Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D104Q16, Q8.6D20, Dic10.12D4, C4.93(D4×D5), C4.6(C2×D20), (C5×Q8).1D4, C2.9(D5×Q16), C4⋊C4.25D10, Q8⋊C44D5, (C2×C8).16D10, (C2×Dic20)⋊6C2, C20.122(C2×D4), C10.17(C2×Q16), C52(C22⋊Q16), C10.24C22≀C2, D101C8.2C2, C10.Q1612C2, (C2×C40).16C22, D102Q8.2C2, (C2×Q8).108D10, (C2×Dic5).39D4, C22.198(D4×D5), (C2×C20).248C23, (C22×D5).115D4, (Q8×C10).31C22, C2.27(C22⋊D20), C2.17(SD16⋊D5), C10.35(C8.C22), (C2×Dic10).75C22, (C2×Q8×D5).4C2, (C2×C5⋊Q16)⋊3C2, (C5×Q8⋊C4)⋊4C2, (C2×C4×D5).25C22, (C2×C10).261(C2×D4), (C5×C4⋊C4).49C22, (C2×C52C8).39C22, (C2×C4).355(C22×D5), SmallGroup(320,435)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D104Q16
C1C5C10C2×C10C2×C20C2×C4×D5C2×Q8×D5 — D104Q16
C5C10C2×C20 — D104Q16
C1C22C2×C4Q8⋊C4

Generators and relations for D104Q16
 G = < a,b,c,d | a10=b2=c8=1, d2=c4, bab=cac-1=dad-1=a-1, cbc-1=dbd-1=a3b, dcd-1=c-1 >

Subgroups: 606 in 148 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C22⋊C8, Q8⋊C4, Q8⋊C4, C22⋊Q8, C2×Q16, C22×Q8, C52C8, C40, Dic10, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22⋊Q16, Dic20, C2×C52C8, C4⋊Dic5, D10⋊C4, C5⋊Q16, C5×C4⋊C4, C2×C40, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, Q8×D5, Q8×C10, C10.Q16, D101C8, C5×Q8⋊C4, D102Q8, C2×Dic20, C2×C5⋊Q16, C2×Q8×D5, D104Q16
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, D10, C22≀C2, C2×Q16, C8.C22, D20, C22×D5, C22⋊Q16, C2×D20, D4×D5, C22⋊D20, SD16⋊D5, D5×Q16, D104Q16

Smallest permutation representation of D104Q16
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 32)(2 31)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 41)(12 50)(13 49)(14 48)(15 47)(16 46)(17 45)(18 44)(19 43)(20 42)(21 141)(22 150)(23 149)(24 148)(25 147)(26 146)(27 145)(28 144)(29 143)(30 142)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(61 85)(62 84)(63 83)(64 82)(65 81)(66 90)(67 89)(68 88)(69 87)(70 86)(91 115)(92 114)(93 113)(94 112)(95 111)(96 120)(97 119)(98 118)(99 117)(100 116)(101 130)(102 129)(103 128)(104 127)(105 126)(106 125)(107 124)(108 123)(109 122)(110 121)(131 160)(132 159)(133 158)(134 157)(135 156)(136 155)(137 154)(138 153)(139 152)(140 151)
(1 21 13 139 33 147 50 158)(2 30 14 138 34 146 41 157)(3 29 15 137 35 145 42 156)(4 28 16 136 36 144 43 155)(5 27 17 135 37 143 44 154)(6 26 18 134 38 142 45 153)(7 25 19 133 39 141 46 152)(8 24 20 132 40 150 47 151)(9 23 11 131 31 149 48 160)(10 22 12 140 32 148 49 159)(51 128 87 111 80 110 69 92)(52 127 88 120 71 109 70 91)(53 126 89 119 72 108 61 100)(54 125 90 118 73 107 62 99)(55 124 81 117 74 106 63 98)(56 123 82 116 75 105 64 97)(57 122 83 115 76 104 65 96)(58 121 84 114 77 103 66 95)(59 130 85 113 78 102 67 94)(60 129 86 112 79 101 68 93)
(1 59 33 78)(2 58 34 77)(3 57 35 76)(4 56 36 75)(5 55 37 74)(6 54 38 73)(7 53 39 72)(8 52 40 71)(9 51 31 80)(10 60 32 79)(11 69 48 87)(12 68 49 86)(13 67 50 85)(14 66 41 84)(15 65 42 83)(16 64 43 82)(17 63 44 81)(18 62 45 90)(19 61 46 89)(20 70 47 88)(21 94 147 113)(22 93 148 112)(23 92 149 111)(24 91 150 120)(25 100 141 119)(26 99 142 118)(27 98 143 117)(28 97 144 116)(29 96 145 115)(30 95 146 114)(101 159 129 140)(102 158 130 139)(103 157 121 138)(104 156 122 137)(105 155 123 136)(106 154 124 135)(107 153 125 134)(108 152 126 133)(109 151 127 132)(110 160 128 131)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,32)(2,31)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,41)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,141)(22,150)(23,149)(24,148)(25,147)(26,146)(27,145)(28,144)(29,143)(30,142)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,85)(62,84)(63,83)(64,82)(65,81)(66,90)(67,89)(68,88)(69,87)(70,86)(91,115)(92,114)(93,113)(94,112)(95,111)(96,120)(97,119)(98,118)(99,117)(100,116)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151), (1,21,13,139,33,147,50,158)(2,30,14,138,34,146,41,157)(3,29,15,137,35,145,42,156)(4,28,16,136,36,144,43,155)(5,27,17,135,37,143,44,154)(6,26,18,134,38,142,45,153)(7,25,19,133,39,141,46,152)(8,24,20,132,40,150,47,151)(9,23,11,131,31,149,48,160)(10,22,12,140,32,148,49,159)(51,128,87,111,80,110,69,92)(52,127,88,120,71,109,70,91)(53,126,89,119,72,108,61,100)(54,125,90,118,73,107,62,99)(55,124,81,117,74,106,63,98)(56,123,82,116,75,105,64,97)(57,122,83,115,76,104,65,96)(58,121,84,114,77,103,66,95)(59,130,85,113,78,102,67,94)(60,129,86,112,79,101,68,93), (1,59,33,78)(2,58,34,77)(3,57,35,76)(4,56,36,75)(5,55,37,74)(6,54,38,73)(7,53,39,72)(8,52,40,71)(9,51,31,80)(10,60,32,79)(11,69,48,87)(12,68,49,86)(13,67,50,85)(14,66,41,84)(15,65,42,83)(16,64,43,82)(17,63,44,81)(18,62,45,90)(19,61,46,89)(20,70,47,88)(21,94,147,113)(22,93,148,112)(23,92,149,111)(24,91,150,120)(25,100,141,119)(26,99,142,118)(27,98,143,117)(28,97,144,116)(29,96,145,115)(30,95,146,114)(101,159,129,140)(102,158,130,139)(103,157,121,138)(104,156,122,137)(105,155,123,136)(106,154,124,135)(107,153,125,134)(108,152,126,133)(109,151,127,132)(110,160,128,131)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,32)(2,31)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,41)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,141)(22,150)(23,149)(24,148)(25,147)(26,146)(27,145)(28,144)(29,143)(30,142)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,85)(62,84)(63,83)(64,82)(65,81)(66,90)(67,89)(68,88)(69,87)(70,86)(91,115)(92,114)(93,113)(94,112)(95,111)(96,120)(97,119)(98,118)(99,117)(100,116)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151), (1,21,13,139,33,147,50,158)(2,30,14,138,34,146,41,157)(3,29,15,137,35,145,42,156)(4,28,16,136,36,144,43,155)(5,27,17,135,37,143,44,154)(6,26,18,134,38,142,45,153)(7,25,19,133,39,141,46,152)(8,24,20,132,40,150,47,151)(9,23,11,131,31,149,48,160)(10,22,12,140,32,148,49,159)(51,128,87,111,80,110,69,92)(52,127,88,120,71,109,70,91)(53,126,89,119,72,108,61,100)(54,125,90,118,73,107,62,99)(55,124,81,117,74,106,63,98)(56,123,82,116,75,105,64,97)(57,122,83,115,76,104,65,96)(58,121,84,114,77,103,66,95)(59,130,85,113,78,102,67,94)(60,129,86,112,79,101,68,93), (1,59,33,78)(2,58,34,77)(3,57,35,76)(4,56,36,75)(5,55,37,74)(6,54,38,73)(7,53,39,72)(8,52,40,71)(9,51,31,80)(10,60,32,79)(11,69,48,87)(12,68,49,86)(13,67,50,85)(14,66,41,84)(15,65,42,83)(16,64,43,82)(17,63,44,81)(18,62,45,90)(19,61,46,89)(20,70,47,88)(21,94,147,113)(22,93,148,112)(23,92,149,111)(24,91,150,120)(25,100,141,119)(26,99,142,118)(27,98,143,117)(28,97,144,116)(29,96,145,115)(30,95,146,114)(101,159,129,140)(102,158,130,139)(103,157,121,138)(104,156,122,137)(105,155,123,136)(106,154,124,135)(107,153,125,134)(108,152,126,133)(109,151,127,132)(110,160,128,131) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,32),(2,31),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,41),(12,50),(13,49),(14,48),(15,47),(16,46),(17,45),(18,44),(19,43),(20,42),(21,141),(22,150),(23,149),(24,148),(25,147),(26,146),(27,145),(28,144),(29,143),(30,142),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(61,85),(62,84),(63,83),(64,82),(65,81),(66,90),(67,89),(68,88),(69,87),(70,86),(91,115),(92,114),(93,113),(94,112),(95,111),(96,120),(97,119),(98,118),(99,117),(100,116),(101,130),(102,129),(103,128),(104,127),(105,126),(106,125),(107,124),(108,123),(109,122),(110,121),(131,160),(132,159),(133,158),(134,157),(135,156),(136,155),(137,154),(138,153),(139,152),(140,151)], [(1,21,13,139,33,147,50,158),(2,30,14,138,34,146,41,157),(3,29,15,137,35,145,42,156),(4,28,16,136,36,144,43,155),(5,27,17,135,37,143,44,154),(6,26,18,134,38,142,45,153),(7,25,19,133,39,141,46,152),(8,24,20,132,40,150,47,151),(9,23,11,131,31,149,48,160),(10,22,12,140,32,148,49,159),(51,128,87,111,80,110,69,92),(52,127,88,120,71,109,70,91),(53,126,89,119,72,108,61,100),(54,125,90,118,73,107,62,99),(55,124,81,117,74,106,63,98),(56,123,82,116,75,105,64,97),(57,122,83,115,76,104,65,96),(58,121,84,114,77,103,66,95),(59,130,85,113,78,102,67,94),(60,129,86,112,79,101,68,93)], [(1,59,33,78),(2,58,34,77),(3,57,35,76),(4,56,36,75),(5,55,37,74),(6,54,38,73),(7,53,39,72),(8,52,40,71),(9,51,31,80),(10,60,32,79),(11,69,48,87),(12,68,49,86),(13,67,50,85),(14,66,41,84),(15,65,42,83),(16,64,43,82),(17,63,44,81),(18,62,45,90),(19,61,46,89),(20,70,47,88),(21,94,147,113),(22,93,148,112),(23,92,149,111),(24,91,150,120),(25,100,141,119),(26,99,142,118),(27,98,143,117),(28,97,144,116),(29,96,145,115),(30,95,146,114),(101,159,129,140),(102,158,130,139),(103,157,121,138),(104,156,122,137),(105,155,123,136),(106,154,124,135),(107,153,125,134),(108,152,126,133),(109,151,127,132),(110,160,128,131)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222244444444455888810···102020202020···2040···40
size111110102244820202040224420202···244448···84···4

47 irreducible representations

dim11111111222222222244444
type+++++++++++++-++++-++--
imageC1C2C2C2C2C2C2C2D4D4D4D4D5Q16D10D10D10D20C8.C22D4×D5D4×D5SD16⋊D5D5×Q16
kernelD104Q16C10.Q16D101C8C5×Q8⋊C4D102Q8C2×Dic20C2×C5⋊Q16C2×Q8×D5Dic10C2×Dic5C5×Q8C22×D5Q8⋊C4D10C4⋊C4C2×C8C2×Q8Q8C10C4C22C2C2
# reps11111111212124222812244

Matrix representation of D104Q16 in GL6(𝔽41)

35350000
6400000
0040000
0004000
000010
000001
,
35350000
4060000
0040000
0027100
0000400
0000040
,
100000
6400000
00283700
00221300
000007
00003524
,
4000000
3510000
00283700
0011300
0000313
00002110

G:=sub<GL(6,GF(41))| [35,6,0,0,0,0,35,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[35,40,0,0,0,0,35,6,0,0,0,0,0,0,40,27,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,6,0,0,0,0,0,40,0,0,0,0,0,0,28,22,0,0,0,0,37,13,0,0,0,0,0,0,0,35,0,0,0,0,7,24],[40,35,0,0,0,0,0,1,0,0,0,0,0,0,28,1,0,0,0,0,37,13,0,0,0,0,0,0,31,21,0,0,0,0,3,10] >;

D104Q16 in GAP, Magma, Sage, TeX

D_{10}\rtimes_4Q_{16}
% in TeX

G:=Group("D10:4Q16");
// GroupNames label

G:=SmallGroup(320,435);
// by ID

G=gap.SmallGroup(320,435);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,226,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^8=1,d^2=c^4,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽