Copied to
clipboard

G = C2xD8.D5order 320 = 26·5

Direct product of C2 and D8.D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD8.D5, D8.7D10, C10:2SD32, C20.22D8, C40.21D4, C40.25C23, Dic20:12C22, C5:3(C2xSD32), (C2xD8).2D5, C4.9(D4:D5), (C10xD8).3C2, (C2xC10).43D8, C10.64(C2xD8), C5:2C16:8C22, C20.161(C2xD4), (C2xC8).234D10, (C2xC20).181D4, C8.14(C5:D4), (C5xD8).7C22, C8.31(C22xD5), (C2xDic20):17C2, (C2xC40).86C22, C22.22(D4:D5), (C2xC5:2C16):7C2, C4.3(C2xC5:D4), C2.19(C2xD4:D5), (C2xC4).143(C5:D4), SmallGroup(320,775)

Series: Derived Chief Lower central Upper central

C1C40 — C2xD8.D5
C1C5C10C20C40Dic20C2xDic20 — C2xD8.D5
C5C10C20C40 — C2xD8.D5
C1C22C2xC4C2xC8C2xD8

Generators and relations for C2xD8.D5
 G = < a,b,c,d,e | a2=b8=c2=d5=1, e2=b4, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=b5c, ede-1=d-1 >

Subgroups: 350 in 90 conjugacy classes, 39 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, Q8, C23, C10, C10, C10, C16, C2xC8, D8, D8, Q16, C2xD4, C2xQ8, Dic5, C20, C2xC10, C2xC10, C2xC16, SD32, C2xD8, C2xQ16, C40, Dic10, C2xDic5, C2xC20, C5xD4, C22xC10, C2xSD32, C5:2C16, Dic20, Dic20, C2xC40, C5xD8, C5xD8, C2xDic10, D4xC10, C2xC5:2C16, D8.D5, C2xDic20, C10xD8, C2xD8.D5
Quotients: C1, C2, C22, D4, C23, D5, D8, C2xD4, D10, SD32, C2xD8, C5:D4, C22xD5, C2xSD32, D4:D5, C2xC5:D4, D8.D5, C2xD4:D5, C2xD8.D5

Smallest permutation representation of C2xD8.D5
On 160 points
Generators in S160
(1 102)(2 103)(3 104)(4 97)(5 98)(6 99)(7 100)(8 101)(9 148)(10 149)(11 150)(12 151)(13 152)(14 145)(15 146)(16 147)(17 144)(18 137)(19 138)(20 139)(21 140)(22 141)(23 142)(24 143)(25 132)(26 133)(27 134)(28 135)(29 136)(30 129)(31 130)(32 131)(33 122)(34 123)(35 124)(36 125)(37 126)(38 127)(39 128)(40 121)(41 78)(42 79)(43 80)(44 73)(45 74)(46 75)(47 76)(48 77)(49 87)(50 88)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 95)(58 96)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 110)(66 111)(67 112)(68 105)(69 106)(70 107)(71 108)(72 109)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 101)(2 100)(3 99)(4 98)(5 97)(6 104)(7 103)(8 102)(9 152)(10 151)(11 150)(12 149)(13 148)(14 147)(15 146)(16 145)(17 138)(18 137)(19 144)(20 143)(21 142)(22 141)(23 140)(24 139)(25 136)(26 135)(27 134)(28 133)(29 132)(30 131)(31 130)(32 129)(33 124)(34 123)(35 122)(36 121)(37 128)(38 127)(39 126)(40 125)(41 73)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 84)(50 83)(51 82)(52 81)(53 88)(54 87)(55 86)(56 85)(57 90)(58 89)(59 96)(60 95)(61 94)(62 93)(63 92)(64 91)(65 107)(66 106)(67 105)(68 112)(69 111)(70 110)(71 109)(72 108)(113 157)(114 156)(115 155)(116 154)(117 153)(118 160)(119 159)(120 158)
(1 72 47 56 63)(2 65 48 49 64)(3 66 41 50 57)(4 67 42 51 58)(5 68 43 52 59)(6 69 44 53 60)(7 70 45 54 61)(8 71 46 55 62)(9 24 25 40 153)(10 17 26 33 154)(11 18 27 34 155)(12 19 28 35 156)(13 20 29 36 157)(14 21 30 37 158)(15 22 31 38 159)(16 23 32 39 160)(73 83 90 99 106)(74 84 91 100 107)(75 85 92 101 108)(76 86 93 102 109)(77 87 94 103 110)(78 88 95 104 111)(79 81 96 97 112)(80 82 89 98 105)(113 148 143 132 121)(114 149 144 133 122)(115 150 137 134 123)(116 151 138 135 124)(117 152 139 136 125)(118 145 140 129 126)(119 146 141 130 127)(120 147 142 131 128)
(1 147 5 151)(2 146 6 150)(3 145 7 149)(4 152 8 148)(9 97 13 101)(10 104 14 100)(11 103 15 99)(12 102 16 98)(17 95 21 91)(18 94 22 90)(19 93 23 89)(20 92 24 96)(25 81 29 85)(26 88 30 84)(27 87 31 83)(28 86 32 82)(33 78 37 74)(34 77 38 73)(35 76 39 80)(36 75 40 79)(41 126 45 122)(42 125 46 121)(43 124 47 128)(44 123 48 127)(49 130 53 134)(50 129 54 133)(51 136 55 132)(52 135 56 131)(57 140 61 144)(58 139 62 143)(59 138 63 142)(60 137 64 141)(65 119 69 115)(66 118 70 114)(67 117 71 113)(68 116 72 120)(105 156 109 160)(106 155 110 159)(107 154 111 158)(108 153 112 157)

G:=sub<Sym(160)| (1,102)(2,103)(3,104)(4,97)(5,98)(6,99)(7,100)(8,101)(9,148)(10,149)(11,150)(12,151)(13,152)(14,145)(15,146)(16,147)(17,144)(18,137)(19,138)(20,139)(21,140)(22,141)(23,142)(24,143)(25,132)(26,133)(27,134)(28,135)(29,136)(30,129)(31,130)(32,131)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,121)(41,78)(42,79)(43,80)(44,73)(45,74)(46,75)(47,76)(48,77)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,95)(58,96)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,110)(66,111)(67,112)(68,105)(69,106)(70,107)(71,108)(72,109)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,101)(2,100)(3,99)(4,98)(5,97)(6,104)(7,103)(8,102)(9,152)(10,151)(11,150)(12,149)(13,148)(14,147)(15,146)(16,145)(17,138)(18,137)(19,144)(20,143)(21,142)(22,141)(23,140)(24,139)(25,136)(26,135)(27,134)(28,133)(29,132)(30,131)(31,130)(32,129)(33,124)(34,123)(35,122)(36,121)(37,128)(38,127)(39,126)(40,125)(41,73)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,84)(50,83)(51,82)(52,81)(53,88)(54,87)(55,86)(56,85)(57,90)(58,89)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,107)(66,106)(67,105)(68,112)(69,111)(70,110)(71,109)(72,108)(113,157)(114,156)(115,155)(116,154)(117,153)(118,160)(119,159)(120,158), (1,72,47,56,63)(2,65,48,49,64)(3,66,41,50,57)(4,67,42,51,58)(5,68,43,52,59)(6,69,44,53,60)(7,70,45,54,61)(8,71,46,55,62)(9,24,25,40,153)(10,17,26,33,154)(11,18,27,34,155)(12,19,28,35,156)(13,20,29,36,157)(14,21,30,37,158)(15,22,31,38,159)(16,23,32,39,160)(73,83,90,99,106)(74,84,91,100,107)(75,85,92,101,108)(76,86,93,102,109)(77,87,94,103,110)(78,88,95,104,111)(79,81,96,97,112)(80,82,89,98,105)(113,148,143,132,121)(114,149,144,133,122)(115,150,137,134,123)(116,151,138,135,124)(117,152,139,136,125)(118,145,140,129,126)(119,146,141,130,127)(120,147,142,131,128), (1,147,5,151)(2,146,6,150)(3,145,7,149)(4,152,8,148)(9,97,13,101)(10,104,14,100)(11,103,15,99)(12,102,16,98)(17,95,21,91)(18,94,22,90)(19,93,23,89)(20,92,24,96)(25,81,29,85)(26,88,30,84)(27,87,31,83)(28,86,32,82)(33,78,37,74)(34,77,38,73)(35,76,39,80)(36,75,40,79)(41,126,45,122)(42,125,46,121)(43,124,47,128)(44,123,48,127)(49,130,53,134)(50,129,54,133)(51,136,55,132)(52,135,56,131)(57,140,61,144)(58,139,62,143)(59,138,63,142)(60,137,64,141)(65,119,69,115)(66,118,70,114)(67,117,71,113)(68,116,72,120)(105,156,109,160)(106,155,110,159)(107,154,111,158)(108,153,112,157)>;

G:=Group( (1,102)(2,103)(3,104)(4,97)(5,98)(6,99)(7,100)(8,101)(9,148)(10,149)(11,150)(12,151)(13,152)(14,145)(15,146)(16,147)(17,144)(18,137)(19,138)(20,139)(21,140)(22,141)(23,142)(24,143)(25,132)(26,133)(27,134)(28,135)(29,136)(30,129)(31,130)(32,131)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,121)(41,78)(42,79)(43,80)(44,73)(45,74)(46,75)(47,76)(48,77)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,95)(58,96)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,110)(66,111)(67,112)(68,105)(69,106)(70,107)(71,108)(72,109)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,101)(2,100)(3,99)(4,98)(5,97)(6,104)(7,103)(8,102)(9,152)(10,151)(11,150)(12,149)(13,148)(14,147)(15,146)(16,145)(17,138)(18,137)(19,144)(20,143)(21,142)(22,141)(23,140)(24,139)(25,136)(26,135)(27,134)(28,133)(29,132)(30,131)(31,130)(32,129)(33,124)(34,123)(35,122)(36,121)(37,128)(38,127)(39,126)(40,125)(41,73)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,84)(50,83)(51,82)(52,81)(53,88)(54,87)(55,86)(56,85)(57,90)(58,89)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,107)(66,106)(67,105)(68,112)(69,111)(70,110)(71,109)(72,108)(113,157)(114,156)(115,155)(116,154)(117,153)(118,160)(119,159)(120,158), (1,72,47,56,63)(2,65,48,49,64)(3,66,41,50,57)(4,67,42,51,58)(5,68,43,52,59)(6,69,44,53,60)(7,70,45,54,61)(8,71,46,55,62)(9,24,25,40,153)(10,17,26,33,154)(11,18,27,34,155)(12,19,28,35,156)(13,20,29,36,157)(14,21,30,37,158)(15,22,31,38,159)(16,23,32,39,160)(73,83,90,99,106)(74,84,91,100,107)(75,85,92,101,108)(76,86,93,102,109)(77,87,94,103,110)(78,88,95,104,111)(79,81,96,97,112)(80,82,89,98,105)(113,148,143,132,121)(114,149,144,133,122)(115,150,137,134,123)(116,151,138,135,124)(117,152,139,136,125)(118,145,140,129,126)(119,146,141,130,127)(120,147,142,131,128), (1,147,5,151)(2,146,6,150)(3,145,7,149)(4,152,8,148)(9,97,13,101)(10,104,14,100)(11,103,15,99)(12,102,16,98)(17,95,21,91)(18,94,22,90)(19,93,23,89)(20,92,24,96)(25,81,29,85)(26,88,30,84)(27,87,31,83)(28,86,32,82)(33,78,37,74)(34,77,38,73)(35,76,39,80)(36,75,40,79)(41,126,45,122)(42,125,46,121)(43,124,47,128)(44,123,48,127)(49,130,53,134)(50,129,54,133)(51,136,55,132)(52,135,56,131)(57,140,61,144)(58,139,62,143)(59,138,63,142)(60,137,64,141)(65,119,69,115)(66,118,70,114)(67,117,71,113)(68,116,72,120)(105,156,109,160)(106,155,110,159)(107,154,111,158)(108,153,112,157) );

G=PermutationGroup([[(1,102),(2,103),(3,104),(4,97),(5,98),(6,99),(7,100),(8,101),(9,148),(10,149),(11,150),(12,151),(13,152),(14,145),(15,146),(16,147),(17,144),(18,137),(19,138),(20,139),(21,140),(22,141),(23,142),(24,143),(25,132),(26,133),(27,134),(28,135),(29,136),(30,129),(31,130),(32,131),(33,122),(34,123),(35,124),(36,125),(37,126),(38,127),(39,128),(40,121),(41,78),(42,79),(43,80),(44,73),(45,74),(46,75),(47,76),(48,77),(49,87),(50,88),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,95),(58,96),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,110),(66,111),(67,112),(68,105),(69,106),(70,107),(71,108),(72,109),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,101),(2,100),(3,99),(4,98),(5,97),(6,104),(7,103),(8,102),(9,152),(10,151),(11,150),(12,149),(13,148),(14,147),(15,146),(16,145),(17,138),(18,137),(19,144),(20,143),(21,142),(22,141),(23,140),(24,139),(25,136),(26,135),(27,134),(28,133),(29,132),(30,131),(31,130),(32,129),(33,124),(34,123),(35,122),(36,121),(37,128),(38,127),(39,126),(40,125),(41,73),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,84),(50,83),(51,82),(52,81),(53,88),(54,87),(55,86),(56,85),(57,90),(58,89),(59,96),(60,95),(61,94),(62,93),(63,92),(64,91),(65,107),(66,106),(67,105),(68,112),(69,111),(70,110),(71,109),(72,108),(113,157),(114,156),(115,155),(116,154),(117,153),(118,160),(119,159),(120,158)], [(1,72,47,56,63),(2,65,48,49,64),(3,66,41,50,57),(4,67,42,51,58),(5,68,43,52,59),(6,69,44,53,60),(7,70,45,54,61),(8,71,46,55,62),(9,24,25,40,153),(10,17,26,33,154),(11,18,27,34,155),(12,19,28,35,156),(13,20,29,36,157),(14,21,30,37,158),(15,22,31,38,159),(16,23,32,39,160),(73,83,90,99,106),(74,84,91,100,107),(75,85,92,101,108),(76,86,93,102,109),(77,87,94,103,110),(78,88,95,104,111),(79,81,96,97,112),(80,82,89,98,105),(113,148,143,132,121),(114,149,144,133,122),(115,150,137,134,123),(116,151,138,135,124),(117,152,139,136,125),(118,145,140,129,126),(119,146,141,130,127),(120,147,142,131,128)], [(1,147,5,151),(2,146,6,150),(3,145,7,149),(4,152,8,148),(9,97,13,101),(10,104,14,100),(11,103,15,99),(12,102,16,98),(17,95,21,91),(18,94,22,90),(19,93,23,89),(20,92,24,96),(25,81,29,85),(26,88,30,84),(27,87,31,83),(28,86,32,82),(33,78,37,74),(34,77,38,73),(35,76,39,80),(36,75,40,79),(41,126,45,122),(42,125,46,121),(43,124,47,128),(44,123,48,127),(49,130,53,134),(50,129,54,133),(51,136,55,132),(52,135,56,131),(57,140,61,144),(58,139,62,143),(59,138,63,142),(60,137,64,141),(65,119,69,115),(66,118,70,114),(67,117,71,113),(68,116,72,120),(105,156,109,160),(106,155,110,159),(107,154,111,158),(108,153,112,157)]])

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D5A5B8A8B8C8D10A···10F10G···10N16A···16H20A20B20C20D40A···40H
order122222444455888810···1010···1016···162020202040···40
size1111882240402222222···28···810···1044444···4

50 irreducible representations

dim111112222222222444
type++++++++++++++-
imageC1C2C2C2C2D4D4D5D8D8D10D10SD32C5:D4C5:D4D4:D5D4:D5D8.D5
kernelC2xD8.D5C2xC5:2C16D8.D5C2xDic20C10xD8C40C2xC20C2xD8C20C2xC10C2xC8D8C10C8C2xC4C4C22C2
# reps114111122224844228

Matrix representation of C2xD8.D5 in GL4(F241) generated by

240000
024000
0010
0001
,
1000
0100
0023011
00230230
,
240000
024000
0023011
001111
,
5224000
5324000
0010
0001
,
23917500
11200
0010341
0041138
G:=sub<GL(4,GF(241))| [240,0,0,0,0,240,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,230,230,0,0,11,230],[240,0,0,0,0,240,0,0,0,0,230,11,0,0,11,11],[52,53,0,0,240,240,0,0,0,0,1,0,0,0,0,1],[239,11,0,0,175,2,0,0,0,0,103,41,0,0,41,138] >;

C2xD8.D5 in GAP, Magma, Sage, TeX

C_2\times D_8.D_5
% in TeX

G:=Group("C2xD8.D5");
// GroupNames label

G:=SmallGroup(320,775);
// by ID

G=gap.SmallGroup(320,775);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,254,675,185,192,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^5=1,e^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^5*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<