Extensions 1→N→G→Q→1 with N=C2×Dic10 and Q=C4

Direct product G=N×Q with N=C2×Dic10 and Q=C4
dρLabelID
C2×C4×Dic10320C2xC4xDic10320,1139

Semidirect products G=N:Q with N=C2×Dic10 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic10)⋊1C4 = C4⋊Dic5⋊C4φ: C4/C1C4 ⊆ Out C2×Dic1080(C2xDic10):1C4320,10
(C2×Dic10)⋊2C4 = C23.30D20φ: C4/C1C4 ⊆ Out C2×Dic1080(C2xDic10):2C4320,25
(C2×Dic10)⋊3C4 = C422F5φ: C4/C1C4 ⊆ Out C2×Dic10804(C2xDic10):3C4320,192
(C2×Dic10)⋊4C4 = C23.D20φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10):4C4320,31
(C2×Dic10)⋊5C4 = D10.1Q16φ: C4/C1C4 ⊆ Out C2×Dic1080(C2xDic10):5C4320,207
(C2×Dic10)⋊6C4 = C23⋊C45D5φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10):6C4320,367
(C2×Dic10)⋊7C4 = (C2×F5)⋊Q8φ: C4/C1C4 ⊆ Out C2×Dic1080(C2xDic10):7C4320,1128
(C2×Dic10)⋊8C4 = C2×D4⋊F5φ: C4/C1C4 ⊆ Out C2×Dic1080(C2xDic10):8C4320,1106
(C2×Dic10)⋊9C4 = (C2×D4)⋊6F5φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10):9C4320,1107
(C2×Dic10)⋊10C4 = (C2×D4)⋊8F5φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10):10C4320,1109
(C2×Dic10)⋊11C4 = C2×Q8⋊F5φ: C4/C1C4 ⊆ Out C2×Dic1080(C2xDic10):11C4320,1119
(C2×Dic10)⋊12C4 = (C2×Q8)⋊4F5φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10):12C4320,1120
(C2×Dic10)⋊13C4 = C2×Q8×F5φ: C4/C1C4 ⊆ Out C2×Dic1080(C2xDic10):13C4320,1599
(C2×Dic10)⋊14C4 = D5.2- 1+4φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10):14C4320,1600
(C2×Dic10)⋊15C4 = (C2×C20)⋊Q8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10):15C4320,273
(C2×Dic10)⋊16C4 = C2×D204C4φ: C4/C2C2 ⊆ Out C2×Dic1080(C2xDic10):16C4320,554
(C2×Dic10)⋊17C4 = (C2×C20)⋊10Q8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10):17C4320,556
(C2×Dic10)⋊18C4 = C2×C20.44D4φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10):18C4320,730
(C2×Dic10)⋊19C4 = C23⋊F55C2φ: C4/C2C2 ⊆ Out C2×Dic10804(C2xDic10):19C4320,1083
(C2×Dic10)⋊20C4 = C2×C10.Q16φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10):20C4320,596
(C2×Dic10)⋊21C4 = (C2×Dic5)⋊6Q8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10):21C4320,601
(C2×Dic10)⋊22C4 = C4.(C2×D20)φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10):22C4320,631
(C2×Dic10)⋊23C4 = C424D10φ: C4/C2C2 ⊆ Out C2×Dic10804(C2xDic10):23C4320,632
(C2×Dic10)⋊24C4 = (C2×D20)⋊25C4φ: C4/C2C2 ⊆ Out C2×Dic10804(C2xDic10):24C4320,633
(C2×Dic10)⋊25C4 = C23.46D20φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10):25C4320,747
(C2×Dic10)⋊26C4 = C2×D207C4φ: C4/C2C2 ⊆ Out C2×Dic1080(C2xDic10):26C4320,765
(C2×Dic10)⋊27C4 = C23.20D20φ: C4/C2C2 ⊆ Out C2×Dic10804(C2xDic10):27C4320,766
(C2×Dic10)⋊28C4 = C2×Dic53Q8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10):28C4320,1168
(C2×Dic10)⋊29C4 = C42.87D10φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10):29C4320,1188

Non-split extensions G=N.Q with N=C2×Dic10 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic10).1C4 = C42.D10φ: C4/C1C4 ⊆ Out C2×Dic10160(C2xDic10).1C4320,22
(C2×Dic10).2C4 = C4.Dic20φ: C4/C1C4 ⊆ Out C2×Dic10320(C2xDic10).2C4320,39
(C2×Dic10).3C4 = C42.F5φ: C4/C1C4 ⊆ Out C2×Dic10804-(C2xDic10).3C4320,193
(C2×Dic10).4C4 = (C2×Q8).D10φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10).4C4320,36
(C2×Dic10).5C4 = (C2×D4).F5φ: C4/C1C4 ⊆ Out C2×Dic10160(C2xDic10).5C4320,259
(C2×Dic10).6C4 = Dic5.Q16φ: C4/C1C4 ⊆ Out C2×Dic10320(C2xDic10).6C4320,269
(C2×Dic10).7C4 = D5×C4.10D4φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10).7C4320,377
(C2×Dic10).8C4 = Dic5.M4(2)φ: C4/C1C4 ⊆ Out C2×Dic10320(C2xDic10).8C4320,1045
(C2×Dic10).9C4 = (C2×D4).7F5φ: C4/C1C4 ⊆ Out C2×Dic10160(C2xDic10).9C4320,1113
(C2×Dic10).10C4 = Dic101C8φ: C4/C1C4 ⊆ Out C2×Dic10320(C2xDic10).10C4320,210
(C2×Dic10).11C4 = Dic10⋊C8φ: C4/C1C4 ⊆ Out C2×Dic10320(C2xDic10).11C4320,1041
(C2×Dic10).12C4 = C20.M4(2)φ: C4/C1C4 ⊆ Out C2×Dic10320(C2xDic10).12C4320,1047
(C2×Dic10).13C4 = (C2×D4).8F5φ: C4/C1C4 ⊆ Out C2×Dic10160(C2xDic10).13C4320,1114
(C2×Dic10).14C4 = (C2×Q8).7F5φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10).14C4320,1127
(C2×Dic10).15C4 = C2×D4.F5φ: C4/C1C4 ⊆ Out C2×Dic10160(C2xDic10).15C4320,1593
(C2×Dic10).16C4 = Dic5.C24φ: C4/C1C4 ⊆ Out C2×Dic10808-(C2xDic10).16C4320,1594
(C2×Dic10).17C4 = Dic103C8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10).17C4320,14
(C2×Dic10).18C4 = C4011Q8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10).18C4320,306
(C2×Dic10).19C4 = C40⋊Q8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10).19C4320,328
(C2×Dic10).20C4 = C22⋊C8⋊D5φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10).20C4320,354
(C2×Dic10).21C4 = Dic5.5M4(2)φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10).21C4320,455
(C2×Dic10).22C4 = (C22×C8)⋊D5φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10).22C4320,737
(C2×Dic10).23C4 = C2×Dic5.D4φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10).23C4320,1098
(C2×Dic10).24C4 = Dic104C8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10).24C4320,42
(C2×Dic10).25C4 = Dic105C8φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10).25C4320,457
(C2×Dic10).26C4 = C42.198D10φ: C4/C2C2 ⊆ Out C2×Dic10320(C2xDic10).26C4320,458
(C2×Dic10).27C4 = C4.89(C2×D20)φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10).27C4320,756
(C2×Dic10).28C4 = C2×C4.12D20φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10).28C4320,763
(C2×Dic10).29C4 = C2×D20.2C4φ: C4/C2C2 ⊆ Out C2×Dic10160(C2xDic10).29C4320,1416
(C2×Dic10).30C4 = C40.47C23φ: C4/C2C2 ⊆ Out C2×Dic10804(C2xDic10).30C4320,1417
(C2×Dic10).31C4 = C8×Dic10φ: trivial image320(C2xDic10).31C4320,305
(C2×Dic10).32C4 = C2×D20.3C4φ: trivial image160(C2xDic10).32C4320,1410

׿
×
𝔽