extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic10)⋊1C4 = C4⋊Dic5⋊C4 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):1C4 | 320,10 |
(C2×Dic10)⋊2C4 = C23.30D20 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):2C4 | 320,25 |
(C2×Dic10)⋊3C4 = C42⋊2F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):3C4 | 320,192 |
(C2×Dic10)⋊4C4 = C23.D20 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):4C4 | 320,31 |
(C2×Dic10)⋊5C4 = D10.1Q16 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):5C4 | 320,207 |
(C2×Dic10)⋊6C4 = C23⋊C4⋊5D5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):6C4 | 320,367 |
(C2×Dic10)⋊7C4 = (C2×F5)⋊Q8 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):7C4 | 320,1128 |
(C2×Dic10)⋊8C4 = C2×D4⋊F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):8C4 | 320,1106 |
(C2×Dic10)⋊9C4 = (C2×D4)⋊6F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):9C4 | 320,1107 |
(C2×Dic10)⋊10C4 = (C2×D4)⋊8F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):10C4 | 320,1109 |
(C2×Dic10)⋊11C4 = C2×Q8⋊F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):11C4 | 320,1119 |
(C2×Dic10)⋊12C4 = (C2×Q8)⋊4F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):12C4 | 320,1120 |
(C2×Dic10)⋊13C4 = C2×Q8×F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):13C4 | 320,1599 |
(C2×Dic10)⋊14C4 = D5.2- 1+4 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10):14C4 | 320,1600 |
(C2×Dic10)⋊15C4 = (C2×C20)⋊Q8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10):15C4 | 320,273 |
(C2×Dic10)⋊16C4 = C2×D20⋊4C4 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):16C4 | 320,554 |
(C2×Dic10)⋊17C4 = (C2×C20)⋊10Q8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10):17C4 | 320,556 |
(C2×Dic10)⋊18C4 = C2×C20.44D4 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10):18C4 | 320,730 |
(C2×Dic10)⋊19C4 = C23⋊F5⋊5C2 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):19C4 | 320,1083 |
(C2×Dic10)⋊20C4 = C2×C10.Q16 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10):20C4 | 320,596 |
(C2×Dic10)⋊21C4 = (C2×Dic5)⋊6Q8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10):21C4 | 320,601 |
(C2×Dic10)⋊22C4 = C4.(C2×D20) | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):22C4 | 320,631 |
(C2×Dic10)⋊23C4 = C42⋊4D10 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):23C4 | 320,632 |
(C2×Dic10)⋊24C4 = (C2×D20)⋊25C4 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):24C4 | 320,633 |
(C2×Dic10)⋊25C4 = C23.46D20 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):25C4 | 320,747 |
(C2×Dic10)⋊26C4 = C2×D20⋊7C4 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 80 | | (C2xDic10):26C4 | 320,765 |
(C2×Dic10)⋊27C4 = C23.20D20 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10):27C4 | 320,766 |
(C2×Dic10)⋊28C4 = C2×Dic5⋊3Q8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10):28C4 | 320,1168 |
(C2×Dic10)⋊29C4 = C42.87D10 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10):29C4 | 320,1188 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic10).1C4 = C42.D10 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).1C4 | 320,22 |
(C2×Dic10).2C4 = C4.Dic20 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).2C4 | 320,39 |
(C2×Dic10).3C4 = C42.F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 4- | (C2xDic10).3C4 | 320,193 |
(C2×Dic10).4C4 = (C2×Q8).D10 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).4C4 | 320,36 |
(C2×Dic10).5C4 = (C2×D4).F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).5C4 | 320,259 |
(C2×Dic10).6C4 = Dic5.Q16 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).6C4 | 320,269 |
(C2×Dic10).7C4 = D5×C4.10D4 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).7C4 | 320,377 |
(C2×Dic10).8C4 = Dic5.M4(2) | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).8C4 | 320,1045 |
(C2×Dic10).9C4 = (C2×D4).7F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).9C4 | 320,1113 |
(C2×Dic10).10C4 = Dic10⋊1C8 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).10C4 | 320,210 |
(C2×Dic10).11C4 = Dic10⋊C8 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).11C4 | 320,1041 |
(C2×Dic10).12C4 = C20.M4(2) | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).12C4 | 320,1047 |
(C2×Dic10).13C4 = (C2×D4).8F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).13C4 | 320,1114 |
(C2×Dic10).14C4 = (C2×Q8).7F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).14C4 | 320,1127 |
(C2×Dic10).15C4 = C2×D4.F5 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).15C4 | 320,1593 |
(C2×Dic10).16C4 = Dic5.C24 | φ: C4/C1 → C4 ⊆ Out C2×Dic10 | 80 | 8- | (C2xDic10).16C4 | 320,1594 |
(C2×Dic10).17C4 = Dic10⋊3C8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).17C4 | 320,14 |
(C2×Dic10).18C4 = C40⋊11Q8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).18C4 | 320,306 |
(C2×Dic10).19C4 = C40⋊Q8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).19C4 | 320,328 |
(C2×Dic10).20C4 = C22⋊C8⋊D5 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).20C4 | 320,354 |
(C2×Dic10).21C4 = Dic5.5M4(2) | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).21C4 | 320,455 |
(C2×Dic10).22C4 = (C22×C8)⋊D5 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).22C4 | 320,737 |
(C2×Dic10).23C4 = C2×Dic5.D4 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).23C4 | 320,1098 |
(C2×Dic10).24C4 = Dic10⋊4C8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).24C4 | 320,42 |
(C2×Dic10).25C4 = Dic10⋊5C8 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).25C4 | 320,457 |
(C2×Dic10).26C4 = C42.198D10 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 320 | | (C2xDic10).26C4 | 320,458 |
(C2×Dic10).27C4 = C4.89(C2×D20) | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).27C4 | 320,756 |
(C2×Dic10).28C4 = C2×C4.12D20 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).28C4 | 320,763 |
(C2×Dic10).29C4 = C2×D20.2C4 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 160 | | (C2xDic10).29C4 | 320,1416 |
(C2×Dic10).30C4 = C40.47C23 | φ: C4/C2 → C2 ⊆ Out C2×Dic10 | 80 | 4 | (C2xDic10).30C4 | 320,1417 |
(C2×Dic10).31C4 = C8×Dic10 | φ: trivial image | 320 | | (C2xDic10).31C4 | 320,305 |
(C2×Dic10).32C4 = C2×D20.3C4 | φ: trivial image | 160 | | (C2xDic10).32C4 | 320,1410 |