Copied to
clipboard

G = D5×C4.10D4order 320 = 26·5

Direct product of D5 and C4.10D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C4.10D4, M4(2).20D10, (C4×D5).2D4, C4.150(D4×D5), C20.95(C2×D4), (C2×C20).7C23, (C2×Q8).94D10, C4.12D207C2, C20.10D43C2, (C2×Dic10).7C4, (D5×M4(2)).7C2, (Q8×C10).5C22, C4.Dic5.4C22, D10.54(C22⋊C4), Dic5.22(C22⋊C4), (C2×Dic10).50C22, (C5×M4(2)).12C22, (C2×C4×D5).2C4, (C2×Q8×D5).1C2, (C2×C4).6(C4×D5), C53(C2×C4.10D4), (C2×C4×D5).7C22, C22.16(C2×C4×D5), (C2×C20).20(C2×C4), C2.15(D5×C22⋊C4), (C2×C4).7(C22×D5), (C5×C4.10D4)⋊5C2, C10.55(C2×C22⋊C4), (C2×Dic5).3(C2×C4), (C2×C10).111(C22×C4), (C22×D5).100(C2×C4), SmallGroup(320,377)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D5×C4.10D4
C1C5C10C20C2×C20C2×C4×D5C2×Q8×D5 — D5×C4.10D4
C5C10C2×C10 — D5×C4.10D4
C1C2C2×C4C4.10D4

Generators and relations for D5×C4.10D4
 G = < a,b,c,d,e | a5=b2=c4=1, d4=c2, e2=dcd-1=c-1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ce=ec, ede-1=c-1d3 >

Subgroups: 526 in 146 conjugacy classes, 53 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, Q8, C23, D5, D5, C10, C10, C2×C8, M4(2), M4(2), C22×C4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C4.10D4, C4.10D4, C2×M4(2), C22×Q8, C52C8, C40, Dic10, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C2×C4.10D4, C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, Q8×D5, Q8×C10, C4.12D20, C20.10D4, C5×C4.10D4, D5×M4(2), C2×Q8×D5, D5×C4.10D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C4.10D4, C2×C22⋊C4, C4×D5, C22×D5, C2×C4.10D4, C2×C4×D5, D4×D5, D5×C22⋊C4, D5×C4.10D4

Smallest permutation representation of D5×C4.10D4
On 80 points
Generators in S80
(1 59 51 46 65)(2 60 52 47 66)(3 61 53 48 67)(4 62 54 41 68)(5 63 55 42 69)(6 64 56 43 70)(7 57 49 44 71)(8 58 50 45 72)(9 27 38 21 75)(10 28 39 22 76)(11 29 40 23 77)(12 30 33 24 78)(13 31 34 17 79)(14 32 35 18 80)(15 25 36 19 73)(16 26 37 20 74)
(1 65)(2 66)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 25)(16 26)(33 78)(34 79)(35 80)(36 73)(37 74)(38 75)(39 76)(40 77)(41 62)(42 63)(43 64)(44 57)(45 58)(46 59)(47 60)(48 61)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 23 21 19)(18 20 22 24)(25 31 29 27)(26 28 30 32)(33 35 37 39)(34 40 38 36)(41 47 45 43)(42 44 46 48)(49 51 53 55)(50 56 54 52)(57 59 61 63)(58 64 62 60)(65 67 69 71)(66 72 70 68)(73 79 77 75)(74 76 78 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 29 7 31 5 25 3 27)(2 30 4 28 6 26 8 32)(9 65 11 71 13 69 15 67)(10 70 16 72 14 66 12 68)(17 55 19 53 21 51 23 49)(18 52 24 54 22 56 20 50)(33 62 39 64 37 58 35 60)(34 63 36 61 38 59 40 57)(41 76 43 74 45 80 47 78)(42 73 48 75 46 77 44 79)

G:=sub<Sym(80)| (1,59,51,46,65)(2,60,52,47,66)(3,61,53,48,67)(4,62,54,41,68)(5,63,55,42,69)(6,64,56,43,70)(7,57,49,44,71)(8,58,50,45,72)(9,27,38,21,75)(10,28,39,22,76)(11,29,40,23,77)(12,30,33,24,78)(13,31,34,17,79)(14,32,35,18,80)(15,25,36,19,73)(16,26,37,20,74), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26)(33,78)(34,79)(35,80)(36,73)(37,74)(38,75)(39,76)(40,77)(41,62)(42,63)(43,64)(44,57)(45,58)(46,59)(47,60)(48,61), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,47,45,43)(42,44,46,48)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,79,77,75)(74,76,78,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,29,7,31,5,25,3,27)(2,30,4,28,6,26,8,32)(9,65,11,71,13,69,15,67)(10,70,16,72,14,66,12,68)(17,55,19,53,21,51,23,49)(18,52,24,54,22,56,20,50)(33,62,39,64,37,58,35,60)(34,63,36,61,38,59,40,57)(41,76,43,74,45,80,47,78)(42,73,48,75,46,77,44,79)>;

G:=Group( (1,59,51,46,65)(2,60,52,47,66)(3,61,53,48,67)(4,62,54,41,68)(5,63,55,42,69)(6,64,56,43,70)(7,57,49,44,71)(8,58,50,45,72)(9,27,38,21,75)(10,28,39,22,76)(11,29,40,23,77)(12,30,33,24,78)(13,31,34,17,79)(14,32,35,18,80)(15,25,36,19,73)(16,26,37,20,74), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26)(33,78)(34,79)(35,80)(36,73)(37,74)(38,75)(39,76)(40,77)(41,62)(42,63)(43,64)(44,57)(45,58)(46,59)(47,60)(48,61), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,47,45,43)(42,44,46,48)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,79,77,75)(74,76,78,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,29,7,31,5,25,3,27)(2,30,4,28,6,26,8,32)(9,65,11,71,13,69,15,67)(10,70,16,72,14,66,12,68)(17,55,19,53,21,51,23,49)(18,52,24,54,22,56,20,50)(33,62,39,64,37,58,35,60)(34,63,36,61,38,59,40,57)(41,76,43,74,45,80,47,78)(42,73,48,75,46,77,44,79) );

G=PermutationGroup([[(1,59,51,46,65),(2,60,52,47,66),(3,61,53,48,67),(4,62,54,41,68),(5,63,55,42,69),(6,64,56,43,70),(7,57,49,44,71),(8,58,50,45,72),(9,27,38,21,75),(10,28,39,22,76),(11,29,40,23,77),(12,30,33,24,78),(13,31,34,17,79),(14,32,35,18,80),(15,25,36,19,73),(16,26,37,20,74)], [(1,65),(2,66),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,25),(16,26),(33,78),(34,79),(35,80),(36,73),(37,74),(38,75),(39,76),(40,77),(41,62),(42,63),(43,64),(44,57),(45,58),(46,59),(47,60),(48,61)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,23,21,19),(18,20,22,24),(25,31,29,27),(26,28,30,32),(33,35,37,39),(34,40,38,36),(41,47,45,43),(42,44,46,48),(49,51,53,55),(50,56,54,52),(57,59,61,63),(58,64,62,60),(65,67,69,71),(66,72,70,68),(73,79,77,75),(74,76,78,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,29,7,31,5,25,3,27),(2,30,4,28,6,26,8,32),(9,65,11,71,13,69,15,67),(10,70,16,72,14,66,12,68),(17,55,19,53,21,51,23,49),(18,52,24,54,22,56,20,50),(33,62,39,64,37,58,35,60),(34,63,36,61,38,59,40,57),(41,76,43,74,45,80,47,78),(42,73,48,75,46,77,44,79)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H5A5B8A8B8C8D8E8F8G8H10A10B10C10D20A20B20C20D20E20F20G20H40A···40H
order12222244444444558888888810101010202020202020202040···40
size1125510224410102020224444202020202244444488888···8

44 irreducible representations

dim1111111122222448
type++++++++++-+-
imageC1C2C2C2C2C2C4C4D4D5D10D10C4×D5C4.10D4D4×D5D5×C4.10D4
kernelD5×C4.10D4C4.12D20C20.10D4C5×C4.10D4D5×M4(2)C2×Q8×D5C2×Dic10C2×C4×D5C4×D5C4.10D4M4(2)C2×Q8C2×C4D5C4C1
# reps1211214442428242

Matrix representation of D5×C4.10D4 in GL6(𝔽41)

3510000
5400000
001000
000100
000010
000001
,
40400000
010000
0040000
0004000
0000400
0000040
,
100000
010000
000100
0040000
003294023
00040321
,
4000000
0400000
0000400
003294023
0004000
00320032
,
4000000
0400000
0018233736
001328826
00393500
003628636

G:=sub<GL(6,GF(41))| [35,5,0,0,0,0,1,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,40,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,32,0,0,0,1,0,9,40,0,0,0,0,40,32,0,0,0,0,23,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,32,0,32,0,0,0,9,40,0,0,0,40,40,0,0,0,0,0,23,0,32],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,18,13,39,36,0,0,23,28,35,28,0,0,37,8,0,6,0,0,36,26,0,36] >;

D5×C4.10D4 in GAP, Magma, Sage, TeX

D_5\times C_4._{10}D_4
% in TeX

G:=Group("D5xC4.10D4");
// GroupNames label

G:=SmallGroup(320,377);
// by ID

G=gap.SmallGroup(320,377);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,219,58,570,136,438,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^4=1,d^4=c^2,e^2=d*c*d^-1=c^-1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations

׿
×
𝔽