metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×D4).8F5, (C4×D5).37D4, (D4×C10).10C4, C23.14(C2×F5), C10.18(C8○D4), C2.18(D4.F5), C4.14(C22⋊F5), C20.14(C22⋊C4), (C2×Dic10).13C4, Dic5.110(C2×D4), C23.2F5⋊12C2, D10.13(C22⋊C4), C22.94(C22×F5), (C2×Dic5).355C23, (C22×Dic5).188C22, (C2×D5⋊C8)⋊2C2, (C2×C4.F5)⋊2C2, (C2×C5⋊D4).8C4, (C2×C4).82(C2×F5), (C2×C20).56(C2×C4), (C2×C5⋊C8).12C22, C2.21(C2×C22⋊F5), C5⋊2((C22×C8)⋊C2), C10.20(C2×C22⋊C4), (C2×C4×D5).201C22, (C2×D4⋊2D5).16C2, (C22×C10).27(C2×C4), (C2×C10).79(C22×C4), (C2×Dic5).74(C2×C4), (C22×D5).56(C2×C4), SmallGroup(320,1114)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C2×D5⋊C8 — (C2×D4).8F5 |
Generators and relations for (C2×D4).8F5
G = < a,b,c,d,e | a2=b4=c2=d5=1, e4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=ab2c, ede-1=d3 >
Subgroups: 586 in 158 conjugacy classes, 52 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C22⋊C8, C22×C8, C2×M4(2), C2×C4○D4, C5⋊C8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, (C22×C8)⋊C2, D5⋊C8, C4.F5, C2×C5⋊C8, C2×Dic10, C2×C4×D5, D4⋊2D5, C22×Dic5, C2×C5⋊D4, D4×C10, C23.2F5, C2×D5⋊C8, C2×C4.F5, C2×D4⋊2D5, (C2×D4).8F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, F5, C2×C22⋊C4, C8○D4, C2×F5, (C22×C8)⋊C2, C22⋊F5, C22×F5, D4.F5, C2×C22⋊F5, (C2×D4).8F5
(1 61)(2 62)(3 63)(4 64)(5 57)(6 58)(7 59)(8 60)(9 76)(10 77)(11 78)(12 79)(13 80)(14 73)(15 74)(16 75)(17 115)(18 116)(19 117)(20 118)(21 119)(22 120)(23 113)(24 114)(25 121)(26 122)(27 123)(28 124)(29 125)(30 126)(31 127)(32 128)(33 158)(34 159)(35 160)(36 153)(37 154)(38 155)(39 156)(40 157)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 97)(56 98)(65 108)(66 109)(67 110)(68 111)(69 112)(70 105)(71 106)(72 107)(81 90)(82 91)(83 92)(84 93)(85 94)(86 95)(87 96)(88 89)(129 152)(130 145)(131 146)(132 147)(133 148)(134 149)(135 150)(136 151)
(1 63 5 59)(2 64 6 60)(3 57 7 61)(4 58 8 62)(9 154 13 158)(10 155 14 159)(11 156 15 160)(12 157 16 153)(17 95 21 91)(18 96 22 92)(19 89 23 93)(20 90 24 94)(25 72 29 68)(26 65 30 69)(27 66 31 70)(28 67 32 71)(33 76 37 80)(34 77 38 73)(35 78 39 74)(36 79 40 75)(41 136 45 132)(42 129 46 133)(43 130 47 134)(44 131 48 135)(49 97 53 101)(50 98 54 102)(51 99 55 103)(52 100 56 104)(81 114 85 118)(82 115 86 119)(83 116 87 120)(84 117 88 113)(105 123 109 127)(106 124 110 128)(107 125 111 121)(108 126 112 122)(137 151 141 147)(138 152 142 148)(139 145 143 149)(140 146 144 150)
(1 50)(2 97)(3 52)(4 99)(5 54)(6 101)(7 56)(8 103)(9 108)(10 70)(11 110)(12 72)(13 112)(14 66)(15 106)(16 68)(17 44)(18 137)(19 46)(20 139)(21 48)(22 141)(23 42)(24 143)(25 157)(26 37)(27 159)(28 39)(29 153)(30 33)(31 155)(32 35)(34 123)(36 125)(38 127)(40 121)(41 116)(43 118)(45 120)(47 114)(49 64)(51 58)(53 60)(55 62)(57 104)(59 98)(61 100)(63 102)(65 76)(67 78)(69 80)(71 74)(73 109)(75 111)(77 105)(79 107)(81 134)(82 146)(83 136)(84 148)(85 130)(86 150)(87 132)(88 152)(89 129)(90 149)(91 131)(92 151)(93 133)(94 145)(95 135)(96 147)(113 138)(115 140)(117 142)(119 144)(122 154)(124 156)(126 158)(128 160)
(1 12 132 143 38)(2 144 13 39 133)(3 40 137 134 14)(4 135 33 15 138)(5 16 136 139 34)(6 140 9 35 129)(7 36 141 130 10)(8 131 37 11 142)(17 65 128 88 51)(18 81 66 52 121)(19 53 82 122 67)(20 123 54 68 83)(21 69 124 84 55)(22 85 70 56 125)(23 49 86 126 71)(24 127 50 72 87)(25 116 90 109 102)(26 110 117 103 91)(27 104 111 92 118)(28 93 97 119 112)(29 120 94 105 98)(30 106 113 99 95)(31 100 107 96 114)(32 89 101 115 108)(41 149 73 63 157)(42 64 150 158 74)(43 159 57 75 151)(44 76 160 152 58)(45 145 77 59 153)(46 60 146 154 78)(47 155 61 79 147)(48 80 156 148 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,113)(24,114)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,158)(34,159)(35,160)(36,153)(37,154)(38,155)(39,156)(40,157)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(65,108)(66,109)(67,110)(68,111)(69,112)(70,105)(71,106)(72,107)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89)(129,152)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151), (1,63,5,59)(2,64,6,60)(3,57,7,61)(4,58,8,62)(9,154,13,158)(10,155,14,159)(11,156,15,160)(12,157,16,153)(17,95,21,91)(18,96,22,92)(19,89,23,93)(20,90,24,94)(25,72,29,68)(26,65,30,69)(27,66,31,70)(28,67,32,71)(33,76,37,80)(34,77,38,73)(35,78,39,74)(36,79,40,75)(41,136,45,132)(42,129,46,133)(43,130,47,134)(44,131,48,135)(49,97,53,101)(50,98,54,102)(51,99,55,103)(52,100,56,104)(81,114,85,118)(82,115,86,119)(83,116,87,120)(84,117,88,113)(105,123,109,127)(106,124,110,128)(107,125,111,121)(108,126,112,122)(137,151,141,147)(138,152,142,148)(139,145,143,149)(140,146,144,150), (1,50)(2,97)(3,52)(4,99)(5,54)(6,101)(7,56)(8,103)(9,108)(10,70)(11,110)(12,72)(13,112)(14,66)(15,106)(16,68)(17,44)(18,137)(19,46)(20,139)(21,48)(22,141)(23,42)(24,143)(25,157)(26,37)(27,159)(28,39)(29,153)(30,33)(31,155)(32,35)(34,123)(36,125)(38,127)(40,121)(41,116)(43,118)(45,120)(47,114)(49,64)(51,58)(53,60)(55,62)(57,104)(59,98)(61,100)(63,102)(65,76)(67,78)(69,80)(71,74)(73,109)(75,111)(77,105)(79,107)(81,134)(82,146)(83,136)(84,148)(85,130)(86,150)(87,132)(88,152)(89,129)(90,149)(91,131)(92,151)(93,133)(94,145)(95,135)(96,147)(113,138)(115,140)(117,142)(119,144)(122,154)(124,156)(126,158)(128,160), (1,12,132,143,38)(2,144,13,39,133)(3,40,137,134,14)(4,135,33,15,138)(5,16,136,139,34)(6,140,9,35,129)(7,36,141,130,10)(8,131,37,11,142)(17,65,128,88,51)(18,81,66,52,121)(19,53,82,122,67)(20,123,54,68,83)(21,69,124,84,55)(22,85,70,56,125)(23,49,86,126,71)(24,127,50,72,87)(25,116,90,109,102)(26,110,117,103,91)(27,104,111,92,118)(28,93,97,119,112)(29,120,94,105,98)(30,106,113,99,95)(31,100,107,96,114)(32,89,101,115,108)(41,149,73,63,157)(42,64,150,158,74)(43,159,57,75,151)(44,76,160,152,58)(45,145,77,59,153)(46,60,146,154,78)(47,155,61,79,147)(48,80,156,148,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,113)(24,114)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,158)(34,159)(35,160)(36,153)(37,154)(38,155)(39,156)(40,157)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(65,108)(66,109)(67,110)(68,111)(69,112)(70,105)(71,106)(72,107)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89)(129,152)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151), (1,63,5,59)(2,64,6,60)(3,57,7,61)(4,58,8,62)(9,154,13,158)(10,155,14,159)(11,156,15,160)(12,157,16,153)(17,95,21,91)(18,96,22,92)(19,89,23,93)(20,90,24,94)(25,72,29,68)(26,65,30,69)(27,66,31,70)(28,67,32,71)(33,76,37,80)(34,77,38,73)(35,78,39,74)(36,79,40,75)(41,136,45,132)(42,129,46,133)(43,130,47,134)(44,131,48,135)(49,97,53,101)(50,98,54,102)(51,99,55,103)(52,100,56,104)(81,114,85,118)(82,115,86,119)(83,116,87,120)(84,117,88,113)(105,123,109,127)(106,124,110,128)(107,125,111,121)(108,126,112,122)(137,151,141,147)(138,152,142,148)(139,145,143,149)(140,146,144,150), (1,50)(2,97)(3,52)(4,99)(5,54)(6,101)(7,56)(8,103)(9,108)(10,70)(11,110)(12,72)(13,112)(14,66)(15,106)(16,68)(17,44)(18,137)(19,46)(20,139)(21,48)(22,141)(23,42)(24,143)(25,157)(26,37)(27,159)(28,39)(29,153)(30,33)(31,155)(32,35)(34,123)(36,125)(38,127)(40,121)(41,116)(43,118)(45,120)(47,114)(49,64)(51,58)(53,60)(55,62)(57,104)(59,98)(61,100)(63,102)(65,76)(67,78)(69,80)(71,74)(73,109)(75,111)(77,105)(79,107)(81,134)(82,146)(83,136)(84,148)(85,130)(86,150)(87,132)(88,152)(89,129)(90,149)(91,131)(92,151)(93,133)(94,145)(95,135)(96,147)(113,138)(115,140)(117,142)(119,144)(122,154)(124,156)(126,158)(128,160), (1,12,132,143,38)(2,144,13,39,133)(3,40,137,134,14)(4,135,33,15,138)(5,16,136,139,34)(6,140,9,35,129)(7,36,141,130,10)(8,131,37,11,142)(17,65,128,88,51)(18,81,66,52,121)(19,53,82,122,67)(20,123,54,68,83)(21,69,124,84,55)(22,85,70,56,125)(23,49,86,126,71)(24,127,50,72,87)(25,116,90,109,102)(26,110,117,103,91)(27,104,111,92,118)(28,93,97,119,112)(29,120,94,105,98)(30,106,113,99,95)(31,100,107,96,114)(32,89,101,115,108)(41,149,73,63,157)(42,64,150,158,74)(43,159,57,75,151)(44,76,160,152,58)(45,145,77,59,153)(46,60,146,154,78)(47,155,61,79,147)(48,80,156,148,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,61),(2,62),(3,63),(4,64),(5,57),(6,58),(7,59),(8,60),(9,76),(10,77),(11,78),(12,79),(13,80),(14,73),(15,74),(16,75),(17,115),(18,116),(19,117),(20,118),(21,119),(22,120),(23,113),(24,114),(25,121),(26,122),(27,123),(28,124),(29,125),(30,126),(31,127),(32,128),(33,158),(34,159),(35,160),(36,153),(37,154),(38,155),(39,156),(40,157),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,97),(56,98),(65,108),(66,109),(67,110),(68,111),(69,112),(70,105),(71,106),(72,107),(81,90),(82,91),(83,92),(84,93),(85,94),(86,95),(87,96),(88,89),(129,152),(130,145),(131,146),(132,147),(133,148),(134,149),(135,150),(136,151)], [(1,63,5,59),(2,64,6,60),(3,57,7,61),(4,58,8,62),(9,154,13,158),(10,155,14,159),(11,156,15,160),(12,157,16,153),(17,95,21,91),(18,96,22,92),(19,89,23,93),(20,90,24,94),(25,72,29,68),(26,65,30,69),(27,66,31,70),(28,67,32,71),(33,76,37,80),(34,77,38,73),(35,78,39,74),(36,79,40,75),(41,136,45,132),(42,129,46,133),(43,130,47,134),(44,131,48,135),(49,97,53,101),(50,98,54,102),(51,99,55,103),(52,100,56,104),(81,114,85,118),(82,115,86,119),(83,116,87,120),(84,117,88,113),(105,123,109,127),(106,124,110,128),(107,125,111,121),(108,126,112,122),(137,151,141,147),(138,152,142,148),(139,145,143,149),(140,146,144,150)], [(1,50),(2,97),(3,52),(4,99),(5,54),(6,101),(7,56),(8,103),(9,108),(10,70),(11,110),(12,72),(13,112),(14,66),(15,106),(16,68),(17,44),(18,137),(19,46),(20,139),(21,48),(22,141),(23,42),(24,143),(25,157),(26,37),(27,159),(28,39),(29,153),(30,33),(31,155),(32,35),(34,123),(36,125),(38,127),(40,121),(41,116),(43,118),(45,120),(47,114),(49,64),(51,58),(53,60),(55,62),(57,104),(59,98),(61,100),(63,102),(65,76),(67,78),(69,80),(71,74),(73,109),(75,111),(77,105),(79,107),(81,134),(82,146),(83,136),(84,148),(85,130),(86,150),(87,132),(88,152),(89,129),(90,149),(91,131),(92,151),(93,133),(94,145),(95,135),(96,147),(113,138),(115,140),(117,142),(119,144),(122,154),(124,156),(126,158),(128,160)], [(1,12,132,143,38),(2,144,13,39,133),(3,40,137,134,14),(4,135,33,15,138),(5,16,136,139,34),(6,140,9,35,129),(7,36,141,130,10),(8,131,37,11,142),(17,65,128,88,51),(18,81,66,52,121),(19,53,82,122,67),(20,123,54,68,83),(21,69,124,84,55),(22,85,70,56,125),(23,49,86,126,71),(24,127,50,72,87),(25,116,90,109,102),(26,110,117,103,91),(27,104,111,92,118),(28,93,97,119,112),(29,120,94,105,98),(30,106,113,99,95),(31,100,107,96,114),(32,89,101,115,108),(41,149,73,63,157),(42,64,150,158,74),(43,159,57,75,151),(44,76,160,152,58),(45,145,77,59,153),(46,60,146,154,78),(47,155,61,79,147),(48,80,156,148,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 20A | 20B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 10 | 10 | 2 | 2 | 5 | 5 | 5 | 5 | 20 | 20 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | C8○D4 | F5 | C2×F5 | C2×F5 | C22⋊F5 | D4.F5 |
kernel | (C2×D4).8F5 | C23.2F5 | C2×D5⋊C8 | C2×C4.F5 | C2×D4⋊2D5 | C2×Dic10 | C2×C5⋊D4 | D4×C10 | C4×D5 | C10 | C2×D4 | C2×C4 | C23 | C4 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 4 | 8 | 1 | 1 | 2 | 4 | 2 |
Matrix representation of (C2×D4).8F5 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 9 | 0 | 0 | 0 | 0 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 38 | 0 | 3 |
0 | 0 | 0 | 19 | 38 | 3 |
0 | 0 | 3 | 38 | 19 | 0 |
0 | 0 | 3 | 0 | 38 | 22 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
38 | 0 | 0 | 0 | 0 | 0 |
0 | 38 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 28 | 20 | 0 |
0 | 0 | 33 | 28 | 0 | 13 |
0 | 0 | 13 | 0 | 28 | 33 |
0 | 0 | 0 | 20 | 28 | 13 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,32,0,0,0,0,9,0,0,0,0,0,0,0,22,0,3,3,0,0,38,19,38,0,0,0,0,38,19,38,0,0,3,3,0,22],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[38,0,0,0,0,0,0,38,0,0,0,0,0,0,13,33,13,0,0,0,28,28,0,20,0,0,20,0,28,28,0,0,0,13,33,13] >;
(C2×D4).8F5 in GAP, Magma, Sage, TeX
(C_2\times D_4)._8F_5
% in TeX
G:=Group("(C2xD4).8F5");
// GroupNames label
G:=SmallGroup(320,1114);
// by ID
G=gap.SmallGroup(320,1114);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a*b^2*c,e*d*e^-1=d^3>;
// generators/relations