extension | φ:Q→Out N | d | ρ | Label | ID |
D10:3Q8:1C2 = D10:2SD16 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:1C2 | 320,434 |
D10:3Q8:2C2 = C5:(C8:D4) | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:2C2 | 320,439 |
D10:3Q8:3C2 = D10:6SD16 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:3C2 | 320,796 |
D10:3Q8:4C2 = C40:14D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:4C2 | 320,798 |
D10:3Q8:5C2 = Dic10.16D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:5C2 | 320,800 |
D10:3Q8:6C2 = C40:8D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:6C2 | 320,801 |
D10:3Q8:7C2 = D20.17D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:7C2 | 320,814 |
D10:3Q8:8C2 = D20:10Q8 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:8C2 | 320,1251 |
D10:3Q8:9C2 = C42.132D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:9C2 | 320,1253 |
D10:3Q8:10C2 = C42.133D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:10C2 | 320,1254 |
D10:3Q8:11C2 = C42.135D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:11C2 | 320,1256 |
D10:3Q8:12C2 = D5xC22:Q8 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:12C2 | 320,1298 |
D10:3Q8:13C2 = C4:C4:26D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:13C2 | 320,1299 |
D10:3Q8:14C2 = C10.162- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:14C2 | 320,1300 |
D10:3Q8:15C2 = C10.172- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:15C2 | 320,1301 |
D10:3Q8:16C2 = C10.512+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:16C2 | 320,1306 |
D10:3Q8:17C2 = C10.1182+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:17C2 | 320,1307 |
D10:3Q8:18C2 = C10.522+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:18C2 | 320,1308 |
D10:3Q8:19C2 = C10.532+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:19C2 | 320,1309 |
D10:3Q8:20C2 = C10.202- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:20C2 | 320,1310 |
D10:3Q8:21C2 = C10.212- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:21C2 | 320,1311 |
D10:3Q8:22C2 = C10.232- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:22C2 | 320,1313 |
D10:3Q8:23C2 = C10.772- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:23C2 | 320,1314 |
D10:3Q8:24C2 = C10.572+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:24C2 | 320,1317 |
D10:3Q8:25C2 = C10.582+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:25C2 | 320,1318 |
D10:3Q8:26C2 = C10.262- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:26C2 | 320,1319 |
D10:3Q8:27C2 = C42.137D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:27C2 | 320,1341 |
D10:3Q8:28C2 = D20:10D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:28C2 | 320,1348 |
D10:3Q8:29C2 = Dic10:10D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:29C2 | 320,1349 |
D10:3Q8:30C2 = C42:20D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:30C2 | 320,1350 |
D10:3Q8:31C2 = C42:21D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:31C2 | 320,1351 |
D10:3Q8:32C2 = C42.234D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:32C2 | 320,1352 |
D10:3Q8:33C2 = C42.144D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:33C2 | 320,1354 |
D10:3Q8:34C2 = C42.145D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:34C2 | 320,1356 |
D10:3Q8:35C2 = D20:12D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:35C2 | 320,1398 |
D10:3Q8:36C2 = D20:8Q8 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:36C2 | 320,1399 |
D10:3Q8:37C2 = D20:9Q8 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:37C2 | 320,1402 |
D10:3Q8:38C2 = C42.178D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:38C2 | 320,1405 |
D10:3Q8:39C2 = C42.180D10 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:39C2 | 320,1407 |
D10:3Q8:40C2 = Q8xC5:D4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:40C2 | 320,1487 |
D10:3Q8:41C2 = C10.442- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:41C2 | 320,1488 |
D10:3Q8:42C2 = C10.452- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:42C2 | 320,1489 |
D10:3Q8:43C2 = C10.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:43C2 | 320,1496 |
D10:3Q8:44C2 = C10.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 80 | | D10:3Q8:44C2 | 320,1501 |
D10:3Q8:45C2 = C10.1472+ 1+4 | φ: C2/C1 → C2 ⊆ Out D10:3Q8 | 160 | | D10:3Q8:45C2 | 320,1505 |
D10:3Q8:46C2 = C42.131D10 | φ: trivial image | 160 | | D10:3Q8:46C2 | 320,1252 |
D10:3Q8:47C2 = (C2xC20):15D4 | φ: trivial image | 80 | | D10:3Q8:47C2 | 320,1500 |