Copied to
clipboard

G = D105Q16order 320 = 26·5

2nd semidirect product of D10 and Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D105Q16, Dic10.17D4, (C2×Q16)⋊3D5, C4.67(D4×D5), (C5×Q8).9D4, C20.52(C2×D4), (C2×C8).38D10, C2.18(D5×Q16), (C10×Q16)⋊13C2, (C2×Q8).62D10, C10.29(C2×Q16), C54(C22⋊Q16), Q8.8(C5⋊D4), C10.61C22≀C2, Q8⋊Dic533C2, D103Q8.8C2, (C2×Dic5).84D4, C22.277(D4×D5), D101C8.12C2, C20.44D430C2, (C2×C40).252C22, (C2×C20).460C23, (C22×D5).130D4, (Q8×C10).89C22, C2.29(C23⋊D10), C2.28(Q16⋊D5), C10.78(C8.C22), C4⋊Dic5.183C22, (C2×Dic10).136C22, (C2×Q8×D5).5C2, C4.48(C2×C5⋊D4), (C2×C5⋊Q16)⋊20C2, (C2×C4×D5).56C22, (C2×C10).371(C2×D4), (C2×C4).548(C22×D5), (C2×C52C8).165C22, SmallGroup(320,813)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D105Q16
C1C5C10C2×C10C2×C20C2×C4×D5C2×Q8×D5 — D105Q16
C5C10C2×C20 — D105Q16
C1C22C2×C4C2×Q16

Generators and relations for D105Q16
 G = < a,b,c,d | a10=b2=c8=1, d2=c4, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a5b, dcd-1=c-1 >

Subgroups: 574 in 148 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C22⋊C8, Q8⋊C4, C22⋊Q8, C2×Q16, C2×Q16, C22×Q8, C52C8, C40, Dic10, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, C22⋊Q16, C2×C52C8, C10.D4, C4⋊Dic5, D10⋊C4, C5⋊Q16, C2×C40, C5×Q16, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, Q8×D5, Q8×C10, C20.44D4, D101C8, Q8⋊Dic5, C2×C5⋊Q16, D103Q8, C10×Q16, C2×Q8×D5, D105Q16
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, D10, C22≀C2, C2×Q16, C8.C22, C5⋊D4, C22×D5, C22⋊Q16, D4×D5, C2×C5⋊D4, D5×Q16, Q16⋊D5, C23⋊D10, D105Q16

Smallest permutation representation of D105Q16
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 32)(2 31)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 44)(12 43)(13 42)(14 41)(15 50)(16 49)(17 48)(18 47)(19 46)(20 45)(21 141)(22 150)(23 149)(24 148)(25 147)(26 146)(27 145)(28 144)(29 143)(30 142)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(61 85)(62 84)(63 83)(64 82)(65 81)(66 90)(67 89)(68 88)(69 87)(70 86)(91 115)(92 114)(93 113)(94 112)(95 111)(96 120)(97 119)(98 118)(99 117)(100 116)(101 130)(102 129)(103 128)(104 127)(105 126)(106 125)(107 124)(108 123)(109 122)(110 121)(131 160)(132 159)(133 158)(134 157)(135 156)(136 155)(137 154)(138 153)(139 152)(140 151)
(1 142 16 153 33 26 50 134)(2 143 17 154 34 27 41 135)(3 144 18 155 35 28 42 136)(4 145 19 156 36 29 43 137)(5 146 20 157 37 30 44 138)(6 147 11 158 38 21 45 139)(7 148 12 159 39 22 46 140)(8 149 13 160 40 23 47 131)(9 150 14 151 31 24 48 132)(10 141 15 152 32 25 49 133)(51 109 87 91 80 127 69 120)(52 110 88 92 71 128 70 111)(53 101 89 93 72 129 61 112)(54 102 90 94 73 130 62 113)(55 103 81 95 74 121 63 114)(56 104 82 96 75 122 64 115)(57 105 83 97 76 123 65 116)(58 106 84 98 77 124 66 117)(59 107 85 99 78 125 67 118)(60 108 86 100 79 126 68 119)
(1 73 33 54)(2 74 34 55)(3 75 35 56)(4 76 36 57)(5 77 37 58)(6 78 38 59)(7 79 39 60)(8 80 40 51)(9 71 31 52)(10 72 32 53)(11 85 45 67)(12 86 46 68)(13 87 47 69)(14 88 48 70)(15 89 49 61)(16 90 50 62)(17 81 41 63)(18 82 42 64)(19 83 43 65)(20 84 44 66)(21 118 147 99)(22 119 148 100)(23 120 149 91)(24 111 150 92)(25 112 141 93)(26 113 142 94)(27 114 143 95)(28 115 144 96)(29 116 145 97)(30 117 146 98)(101 133 129 152)(102 134 130 153)(103 135 121 154)(104 136 122 155)(105 137 123 156)(106 138 124 157)(107 139 125 158)(108 140 126 159)(109 131 127 160)(110 132 128 151)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,32)(2,31)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,44)(12,43)(13,42)(14,41)(15,50)(16,49)(17,48)(18,47)(19,46)(20,45)(21,141)(22,150)(23,149)(24,148)(25,147)(26,146)(27,145)(28,144)(29,143)(30,142)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,85)(62,84)(63,83)(64,82)(65,81)(66,90)(67,89)(68,88)(69,87)(70,86)(91,115)(92,114)(93,113)(94,112)(95,111)(96,120)(97,119)(98,118)(99,117)(100,116)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151), (1,142,16,153,33,26,50,134)(2,143,17,154,34,27,41,135)(3,144,18,155,35,28,42,136)(4,145,19,156,36,29,43,137)(5,146,20,157,37,30,44,138)(6,147,11,158,38,21,45,139)(7,148,12,159,39,22,46,140)(8,149,13,160,40,23,47,131)(9,150,14,151,31,24,48,132)(10,141,15,152,32,25,49,133)(51,109,87,91,80,127,69,120)(52,110,88,92,71,128,70,111)(53,101,89,93,72,129,61,112)(54,102,90,94,73,130,62,113)(55,103,81,95,74,121,63,114)(56,104,82,96,75,122,64,115)(57,105,83,97,76,123,65,116)(58,106,84,98,77,124,66,117)(59,107,85,99,78,125,67,118)(60,108,86,100,79,126,68,119), (1,73,33,54)(2,74,34,55)(3,75,35,56)(4,76,36,57)(5,77,37,58)(6,78,38,59)(7,79,39,60)(8,80,40,51)(9,71,31,52)(10,72,32,53)(11,85,45,67)(12,86,46,68)(13,87,47,69)(14,88,48,70)(15,89,49,61)(16,90,50,62)(17,81,41,63)(18,82,42,64)(19,83,43,65)(20,84,44,66)(21,118,147,99)(22,119,148,100)(23,120,149,91)(24,111,150,92)(25,112,141,93)(26,113,142,94)(27,114,143,95)(28,115,144,96)(29,116,145,97)(30,117,146,98)(101,133,129,152)(102,134,130,153)(103,135,121,154)(104,136,122,155)(105,137,123,156)(106,138,124,157)(107,139,125,158)(108,140,126,159)(109,131,127,160)(110,132,128,151)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,32)(2,31)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,44)(12,43)(13,42)(14,41)(15,50)(16,49)(17,48)(18,47)(19,46)(20,45)(21,141)(22,150)(23,149)(24,148)(25,147)(26,146)(27,145)(28,144)(29,143)(30,142)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,85)(62,84)(63,83)(64,82)(65,81)(66,90)(67,89)(68,88)(69,87)(70,86)(91,115)(92,114)(93,113)(94,112)(95,111)(96,120)(97,119)(98,118)(99,117)(100,116)(101,130)(102,129)(103,128)(104,127)(105,126)(106,125)(107,124)(108,123)(109,122)(110,121)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151), (1,142,16,153,33,26,50,134)(2,143,17,154,34,27,41,135)(3,144,18,155,35,28,42,136)(4,145,19,156,36,29,43,137)(5,146,20,157,37,30,44,138)(6,147,11,158,38,21,45,139)(7,148,12,159,39,22,46,140)(8,149,13,160,40,23,47,131)(9,150,14,151,31,24,48,132)(10,141,15,152,32,25,49,133)(51,109,87,91,80,127,69,120)(52,110,88,92,71,128,70,111)(53,101,89,93,72,129,61,112)(54,102,90,94,73,130,62,113)(55,103,81,95,74,121,63,114)(56,104,82,96,75,122,64,115)(57,105,83,97,76,123,65,116)(58,106,84,98,77,124,66,117)(59,107,85,99,78,125,67,118)(60,108,86,100,79,126,68,119), (1,73,33,54)(2,74,34,55)(3,75,35,56)(4,76,36,57)(5,77,37,58)(6,78,38,59)(7,79,39,60)(8,80,40,51)(9,71,31,52)(10,72,32,53)(11,85,45,67)(12,86,46,68)(13,87,47,69)(14,88,48,70)(15,89,49,61)(16,90,50,62)(17,81,41,63)(18,82,42,64)(19,83,43,65)(20,84,44,66)(21,118,147,99)(22,119,148,100)(23,120,149,91)(24,111,150,92)(25,112,141,93)(26,113,142,94)(27,114,143,95)(28,115,144,96)(29,116,145,97)(30,117,146,98)(101,133,129,152)(102,134,130,153)(103,135,121,154)(104,136,122,155)(105,137,123,156)(106,138,124,157)(107,139,125,158)(108,140,126,159)(109,131,127,160)(110,132,128,151) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,32),(2,31),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,44),(12,43),(13,42),(14,41),(15,50),(16,49),(17,48),(18,47),(19,46),(20,45),(21,141),(22,150),(23,149),(24,148),(25,147),(26,146),(27,145),(28,144),(29,143),(30,142),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(61,85),(62,84),(63,83),(64,82),(65,81),(66,90),(67,89),(68,88),(69,87),(70,86),(91,115),(92,114),(93,113),(94,112),(95,111),(96,120),(97,119),(98,118),(99,117),(100,116),(101,130),(102,129),(103,128),(104,127),(105,126),(106,125),(107,124),(108,123),(109,122),(110,121),(131,160),(132,159),(133,158),(134,157),(135,156),(136,155),(137,154),(138,153),(139,152),(140,151)], [(1,142,16,153,33,26,50,134),(2,143,17,154,34,27,41,135),(3,144,18,155,35,28,42,136),(4,145,19,156,36,29,43,137),(5,146,20,157,37,30,44,138),(6,147,11,158,38,21,45,139),(7,148,12,159,39,22,46,140),(8,149,13,160,40,23,47,131),(9,150,14,151,31,24,48,132),(10,141,15,152,32,25,49,133),(51,109,87,91,80,127,69,120),(52,110,88,92,71,128,70,111),(53,101,89,93,72,129,61,112),(54,102,90,94,73,130,62,113),(55,103,81,95,74,121,63,114),(56,104,82,96,75,122,64,115),(57,105,83,97,76,123,65,116),(58,106,84,98,77,124,66,117),(59,107,85,99,78,125,67,118),(60,108,86,100,79,126,68,119)], [(1,73,33,54),(2,74,34,55),(3,75,35,56),(4,76,36,57),(5,77,37,58),(6,78,38,59),(7,79,39,60),(8,80,40,51),(9,71,31,52),(10,72,32,53),(11,85,45,67),(12,86,46,68),(13,87,47,69),(14,88,48,70),(15,89,49,61),(16,90,50,62),(17,81,41,63),(18,82,42,64),(19,83,43,65),(20,84,44,66),(21,118,147,99),(22,119,148,100),(23,120,149,91),(24,111,150,92),(25,112,141,93),(26,113,142,94),(27,114,143,95),(28,115,144,96),(29,116,145,97),(30,117,146,98),(101,133,129,152),(102,134,130,153),(103,135,121,154),(104,136,122,155),(105,137,123,156),(106,138,124,157),(107,139,125,158),(108,140,126,159),(109,131,127,160),(110,132,128,151)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222244444444455888810···102020202020···2040···40
size111110102244820202040224420202···244448···84···4

47 irreducible representations

dim1111111122222222244444
type+++++++++++++-++-++-
imageC1C2C2C2C2C2C2C2D4D4D4D4D5Q16D10D10C5⋊D4C8.C22D4×D5D4×D5D5×Q16Q16⋊D5
kernelD105Q16C20.44D4D101C8Q8⋊Dic5C2×C5⋊Q16D103Q8C10×Q16C2×Q8×D5Dic10C2×Dic5C5×Q8C22×D5C2×Q16D10C2×C8C2×Q8Q8C10C4C22C2C2
# reps1111111121212424812244

Matrix representation of D105Q16 in GL6(𝔽41)

35350000
6400000
0040000
0004000
000010
000001
,
35350000
4060000
0040000
0040100
0000400
0000040
,
4000000
0400000
0016900
00402500
000006
00003417
,
100000
010000
0016900
00402500
00002017
00001521

G:=sub<GL(6,GF(41))| [35,6,0,0,0,0,35,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[35,40,0,0,0,0,35,6,0,0,0,0,0,0,40,40,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,16,40,0,0,0,0,9,25,0,0,0,0,0,0,0,34,0,0,0,0,6,17],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,40,0,0,0,0,9,25,0,0,0,0,0,0,20,15,0,0,0,0,17,21] >;

D105Q16 in GAP, Magma, Sage, TeX

D_{10}\rtimes_5Q_{16}
% in TeX

G:=Group("D10:5Q16");
// GroupNames label

G:=SmallGroup(320,813);
// by ID

G=gap.SmallGroup(320,813);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,219,184,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^8=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽