Copied to
clipboard

G = C4014D4order 320 = 26·5

14th semidirect product of C40 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4014D4, D104SD16, C57(C88D4), C811(C5⋊D4), C406C427C2, D103Q84C2, (C10×SD16)⋊8C2, (C2×SD16)⋊12D5, (C2×D4).73D10, (C2×C8).263D10, C202D4.9C2, C20.176(C2×D4), (C2×Q8).54D10, C2.30(D5×SD16), C10.63(C4○D8), Q8⋊Dic529C2, D4⋊Dic534C2, C10.47(C2×SD16), (C22×D5).90D4, C22.268(D4×D5), C20.101(C4○D4), C4.32(D42D5), C2.19(C202D4), (C2×C40).164C22, (C2×C20).448C23, (C2×Dic5).159D4, (D4×C10).97C22, (Q8×C10).77C22, C10.116(C4⋊D4), C4⋊Dic5.175C22, C2.29(SD163D5), (D5×C2×C8)⋊8C2, C4.82(C2×C5⋊D4), (C2×C10).360(C2×D4), (C2×C4×D5).310C22, (C2×C4).537(C22×D5), (C2×C52C8).282C22, SmallGroup(320,798)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C4014D4
C1C5C10C2×C10C2×C20C2×C4×D5D5×C2×C8 — C4014D4
C5C10C2×C20 — C4014D4
C1C22C2×C4C2×SD16

Generators and relations for C4014D4
 G = < a,b,c | a40=b4=c2=1, bab-1=a19, cac=a9, cbc=b-1 >

Subgroups: 486 in 124 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, C52C8, C40, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C88D4, C8×D5, C2×C52C8, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C2×C40, C5×SD16, C2×C4×D5, C2×C5⋊D4, D4×C10, Q8×C10, C406C4, D4⋊Dic5, Q8⋊Dic5, D5×C2×C8, C202D4, D103Q8, C10×SD16, C4014D4
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C4○D8, C5⋊D4, C22×D5, C88D4, D4×D5, D42D5, C2×C5⋊D4, D5×SD16, SD163D5, C202D4, C4014D4

Smallest permutation representation of C4014D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 104 61 131)(2 83 62 150)(3 102 63 129)(4 81 64 148)(5 100 65 127)(6 119 66 146)(7 98 67 125)(8 117 68 144)(9 96 69 123)(10 115 70 142)(11 94 71 121)(12 113 72 140)(13 92 73 159)(14 111 74 138)(15 90 75 157)(16 109 76 136)(17 88 77 155)(18 107 78 134)(19 86 79 153)(20 105 80 132)(21 84 41 151)(22 103 42 130)(23 82 43 149)(24 101 44 128)(25 120 45 147)(26 99 46 126)(27 118 47 145)(28 97 48 124)(29 116 49 143)(30 95 50 122)(31 114 51 141)(32 93 52 160)(33 112 53 139)(34 91 54 158)(35 110 55 137)(36 89 56 156)(37 108 57 135)(38 87 58 154)(39 106 59 133)(40 85 60 152)
(2 10)(3 19)(4 28)(5 37)(7 15)(8 24)(9 33)(12 20)(13 29)(14 38)(17 25)(18 34)(22 30)(23 39)(27 35)(32 40)(42 50)(43 59)(44 68)(45 77)(47 55)(48 64)(49 73)(52 60)(53 69)(54 78)(57 65)(58 74)(62 70)(63 79)(67 75)(72 80)(81 124)(82 133)(83 142)(84 151)(85 160)(86 129)(87 138)(88 147)(89 156)(90 125)(91 134)(92 143)(93 152)(94 121)(95 130)(96 139)(97 148)(98 157)(99 126)(100 135)(101 144)(102 153)(103 122)(104 131)(105 140)(106 149)(107 158)(108 127)(109 136)(110 145)(111 154)(112 123)(113 132)(114 141)(115 150)(116 159)(117 128)(118 137)(119 146)(120 155)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,104,61,131)(2,83,62,150)(3,102,63,129)(4,81,64,148)(5,100,65,127)(6,119,66,146)(7,98,67,125)(8,117,68,144)(9,96,69,123)(10,115,70,142)(11,94,71,121)(12,113,72,140)(13,92,73,159)(14,111,74,138)(15,90,75,157)(16,109,76,136)(17,88,77,155)(18,107,78,134)(19,86,79,153)(20,105,80,132)(21,84,41,151)(22,103,42,130)(23,82,43,149)(24,101,44,128)(25,120,45,147)(26,99,46,126)(27,118,47,145)(28,97,48,124)(29,116,49,143)(30,95,50,122)(31,114,51,141)(32,93,52,160)(33,112,53,139)(34,91,54,158)(35,110,55,137)(36,89,56,156)(37,108,57,135)(38,87,58,154)(39,106,59,133)(40,85,60,152), (2,10)(3,19)(4,28)(5,37)(7,15)(8,24)(9,33)(12,20)(13,29)(14,38)(17,25)(18,34)(22,30)(23,39)(27,35)(32,40)(42,50)(43,59)(44,68)(45,77)(47,55)(48,64)(49,73)(52,60)(53,69)(54,78)(57,65)(58,74)(62,70)(63,79)(67,75)(72,80)(81,124)(82,133)(83,142)(84,151)(85,160)(86,129)(87,138)(88,147)(89,156)(90,125)(91,134)(92,143)(93,152)(94,121)(95,130)(96,139)(97,148)(98,157)(99,126)(100,135)(101,144)(102,153)(103,122)(104,131)(105,140)(106,149)(107,158)(108,127)(109,136)(110,145)(111,154)(112,123)(113,132)(114,141)(115,150)(116,159)(117,128)(118,137)(119,146)(120,155)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,104,61,131)(2,83,62,150)(3,102,63,129)(4,81,64,148)(5,100,65,127)(6,119,66,146)(7,98,67,125)(8,117,68,144)(9,96,69,123)(10,115,70,142)(11,94,71,121)(12,113,72,140)(13,92,73,159)(14,111,74,138)(15,90,75,157)(16,109,76,136)(17,88,77,155)(18,107,78,134)(19,86,79,153)(20,105,80,132)(21,84,41,151)(22,103,42,130)(23,82,43,149)(24,101,44,128)(25,120,45,147)(26,99,46,126)(27,118,47,145)(28,97,48,124)(29,116,49,143)(30,95,50,122)(31,114,51,141)(32,93,52,160)(33,112,53,139)(34,91,54,158)(35,110,55,137)(36,89,56,156)(37,108,57,135)(38,87,58,154)(39,106,59,133)(40,85,60,152), (2,10)(3,19)(4,28)(5,37)(7,15)(8,24)(9,33)(12,20)(13,29)(14,38)(17,25)(18,34)(22,30)(23,39)(27,35)(32,40)(42,50)(43,59)(44,68)(45,77)(47,55)(48,64)(49,73)(52,60)(53,69)(54,78)(57,65)(58,74)(62,70)(63,79)(67,75)(72,80)(81,124)(82,133)(83,142)(84,151)(85,160)(86,129)(87,138)(88,147)(89,156)(90,125)(91,134)(92,143)(93,152)(94,121)(95,130)(96,139)(97,148)(98,157)(99,126)(100,135)(101,144)(102,153)(103,122)(104,131)(105,140)(106,149)(107,158)(108,127)(109,136)(110,145)(111,154)(112,123)(113,132)(114,141)(115,150)(116,159)(117,128)(118,137)(119,146)(120,155) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,104,61,131),(2,83,62,150),(3,102,63,129),(4,81,64,148),(5,100,65,127),(6,119,66,146),(7,98,67,125),(8,117,68,144),(9,96,69,123),(10,115,70,142),(11,94,71,121),(12,113,72,140),(13,92,73,159),(14,111,74,138),(15,90,75,157),(16,109,76,136),(17,88,77,155),(18,107,78,134),(19,86,79,153),(20,105,80,132),(21,84,41,151),(22,103,42,130),(23,82,43,149),(24,101,44,128),(25,120,45,147),(26,99,46,126),(27,118,47,145),(28,97,48,124),(29,116,49,143),(30,95,50,122),(31,114,51,141),(32,93,52,160),(33,112,53,139),(34,91,54,158),(35,110,55,137),(36,89,56,156),(37,108,57,135),(38,87,58,154),(39,106,59,133),(40,85,60,152)], [(2,10),(3,19),(4,28),(5,37),(7,15),(8,24),(9,33),(12,20),(13,29),(14,38),(17,25),(18,34),(22,30),(23,39),(27,35),(32,40),(42,50),(43,59),(44,68),(45,77),(47,55),(48,64),(49,73),(52,60),(53,69),(54,78),(57,65),(58,74),(62,70),(63,79),(67,75),(72,80),(81,124),(82,133),(83,142),(84,151),(85,160),(86,129),(87,138),(88,147),(89,156),(90,125),(91,134),(92,143),(93,152),(94,121),(95,130),(96,139),(97,148),(98,157),(99,126),(100,135),(101,144),(102,153),(103,122),(104,131),(105,140),(106,149),(107,158),(108,127),(109,136),(110,145),(111,154),(112,123),(113,132),(114,141),(115,150),(116,159),(117,128),(118,137),(119,146),(120,155)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G5A5B8A8B8C8D8E8F8G8H10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222224444444558888888810···1010101010202020202020202040···40
size11118101022810104040222222101010102···28888444488884···4

50 irreducible representations

dim11111111222222222224444
type+++++++++++++++-+
imageC1C2C2C2C2C2C2C2D4D4D4D5C4○D4SD16D10D10D10C4○D8C5⋊D4D42D5D4×D5D5×SD16SD163D5
kernelC4014D4C406C4D4⋊Dic5Q8⋊Dic5D5×C2×C8C202D4D103Q8C10×SD16C40C2×Dic5C22×D5C2×SD16C20D10C2×C8C2×D4C2×Q8C10C8C4C22C2C2
# reps11111111211224222482244

Matrix representation of C4014D4 in GL4(𝔽41) generated by

32000
02700
00734
00740
,
121100
392900
0033
002438
,
11200
04000
00347
00407
G:=sub<GL(4,GF(41))| [3,0,0,0,20,27,0,0,0,0,7,7,0,0,34,40],[12,39,0,0,11,29,0,0,0,0,3,24,0,0,3,38],[1,0,0,0,12,40,0,0,0,0,34,40,0,0,7,7] >;

C4014D4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_{14}D_4
% in TeX

G:=Group("C40:14D4");
// GroupNames label

G:=SmallGroup(320,798);
// by ID

G=gap.SmallGroup(320,798);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,555,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^19,c*a*c=a^9,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽