Copied to
clipboard

G = C10.522+ 1+4order 320 = 26·5

52nd non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.522+ 1+4, C5⋊D43Q8, C4⋊C4.97D10, C56(D43Q8), C22⋊Q813D5, C22.2(Q8×D5), D10.22(C2×Q8), (C2×Q8).75D10, D103Q818C2, D10⋊Q822C2, (C2×C20).59C23, C22⋊C4.61D10, Dic5.24(C2×Q8), Dic5⋊Q816C2, Dic53Q827C2, C10.38(C22×Q8), (C2×C10).180C24, Dic54D4.3C2, (C22×C4).242D10, C2.54(D46D10), Dic5.40(C4○D4), Dic5.Q819C2, C4⋊Dic5.217C22, (Q8×C10).111C22, (C2×Dic5).91C23, C22.201(C23×D5), C23.193(C22×D5), Dic5.14D426C2, D10⋊C4.25C22, (C22×C10).208C23, (C22×C20).380C22, (C4×Dic5).117C22, C10.D4.30C22, (C22×D5).212C23, C23.D5.120C22, (C2×Dic10).167C22, (C22×Dic5).121C22, (D5×C4⋊C4)⋊28C2, C2.21(C2×Q8×D5), C2.51(D5×C4○D4), (C2×C10).9(C2×Q8), (C4×C5⋊D4).18C2, (C5×C22⋊Q8)⋊16C2, C10.163(C2×C4○D4), (C2×C4×D5).109C22, (C2×C4).50(C22×D5), (C2×C10.D4)⋊41C2, (C5×C4⋊C4).162C22, (C2×C5⋊D4).135C22, (C5×C22⋊C4).35C22, SmallGroup(320,1308)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.522+ 1+4
C1C5C10C2×C10C22×D5C2×C5⋊D4C4×C5⋊D4 — C10.522+ 1+4
C5C2×C10 — C10.522+ 1+4
C1C22C22⋊Q8

Generators and relations for C10.522+ 1+4
 G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=b2, ab=ba, ac=ca, dad-1=eae=a-1, cbc-1=b-1, dbd-1=a5b, be=eb, cd=dc, ce=ec, ede=a5b2d >

Subgroups: 742 in 228 conjugacy classes, 105 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C4×D4, C4×Q8, C22⋊Q8, C22⋊Q8, C42.C2, C4⋊Q8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×Q8, C22×D5, C22×C10, D43Q8, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, Q8×C10, Dic5.14D4, Dic54D4, Dic53Q8, Dic5.Q8, D5×C4⋊C4, D10⋊Q8, C2×C10.D4, C4×C5⋊D4, Dic5⋊Q8, D103Q8, C5×C22⋊Q8, C10.522+ 1+4
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, C24, D10, C22×Q8, C2×C4○D4, 2+ 1+4, C22×D5, D43Q8, Q8×D5, C23×D5, D46D10, C2×Q8×D5, D5×C4○D4, C10.522+ 1+4

Smallest permutation representation of C10.522+ 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 90 25 73)(2 81 26 74)(3 82 27 75)(4 83 28 76)(5 84 29 77)(6 85 30 78)(7 86 21 79)(8 87 22 80)(9 88 23 71)(10 89 24 72)(11 98 158 105)(12 99 159 106)(13 100 160 107)(14 91 151 108)(15 92 152 109)(16 93 153 110)(17 94 154 101)(18 95 155 102)(19 96 156 103)(20 97 157 104)(31 68 48 51)(32 69 49 52)(33 70 50 53)(34 61 41 54)(35 62 42 55)(36 63 43 56)(37 64 44 57)(38 65 45 58)(39 66 46 59)(40 67 47 60)(111 136 128 143)(112 137 129 144)(113 138 130 145)(114 139 121 146)(115 140 122 147)(116 131 123 148)(117 132 124 149)(118 133 125 150)(119 134 126 141)(120 135 127 142)
(1 53 6 58)(2 54 7 59)(3 55 8 60)(4 56 9 51)(5 57 10 52)(11 125 16 130)(12 126 17 121)(13 127 18 122)(14 128 19 123)(15 129 20 124)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)(41 86 46 81)(42 87 47 82)(43 88 48 83)(44 89 49 84)(45 90 50 85)(91 136 96 131)(92 137 97 132)(93 138 98 133)(94 139 99 134)(95 140 100 135)(101 146 106 141)(102 147 107 142)(103 148 108 143)(104 149 109 144)(105 150 110 145)(111 156 116 151)(112 157 117 152)(113 158 118 153)(114 159 119 154)(115 160 120 155)
(1 133 25 150)(2 132 26 149)(3 131 27 148)(4 140 28 147)(5 139 29 146)(6 138 30 145)(7 137 21 144)(8 136 22 143)(9 135 23 142)(10 134 24 141)(11 33 158 50)(12 32 159 49)(13 31 160 48)(14 40 151 47)(15 39 152 46)(16 38 153 45)(17 37 154 44)(18 36 155 43)(19 35 156 42)(20 34 157 41)(51 95 68 102)(52 94 69 101)(53 93 70 110)(54 92 61 109)(55 91 62 108)(56 100 63 107)(57 99 64 106)(58 98 65 105)(59 97 66 104)(60 96 67 103)(71 115 88 122)(72 114 89 121)(73 113 90 130)(74 112 81 129)(75 111 82 128)(76 120 83 127)(77 119 84 126)(78 118 85 125)(79 117 86 124)(80 116 87 123)
(2 10)(3 9)(4 8)(5 7)(11 153)(12 152)(13 151)(14 160)(15 159)(16 158)(17 157)(18 156)(19 155)(20 154)(21 29)(22 28)(23 27)(24 26)(31 35)(32 34)(36 40)(37 39)(41 49)(42 48)(43 47)(44 46)(51 55)(52 54)(56 60)(57 59)(61 69)(62 68)(63 67)(64 66)(71 75)(72 74)(76 80)(77 79)(81 89)(82 88)(83 87)(84 86)(91 107)(92 106)(93 105)(94 104)(95 103)(96 102)(97 101)(98 110)(99 109)(100 108)(111 127)(112 126)(113 125)(114 124)(115 123)(116 122)(117 121)(118 130)(119 129)(120 128)(131 147)(132 146)(133 145)(134 144)(135 143)(136 142)(137 141)(138 150)(139 149)(140 148)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,90,25,73)(2,81,26,74)(3,82,27,75)(4,83,28,76)(5,84,29,77)(6,85,30,78)(7,86,21,79)(8,87,22,80)(9,88,23,71)(10,89,24,72)(11,98,158,105)(12,99,159,106)(13,100,160,107)(14,91,151,108)(15,92,152,109)(16,93,153,110)(17,94,154,101)(18,95,155,102)(19,96,156,103)(20,97,157,104)(31,68,48,51)(32,69,49,52)(33,70,50,53)(34,61,41,54)(35,62,42,55)(36,63,43,56)(37,64,44,57)(38,65,45,58)(39,66,46,59)(40,67,47,60)(111,136,128,143)(112,137,129,144)(113,138,130,145)(114,139,121,146)(115,140,122,147)(116,131,123,148)(117,132,124,149)(118,133,125,150)(119,134,126,141)(120,135,127,142), (1,53,6,58)(2,54,7,59)(3,55,8,60)(4,56,9,51)(5,57,10,52)(11,125,16,130)(12,126,17,121)(13,127,18,122)(14,128,19,123)(15,129,20,124)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(41,86,46,81)(42,87,47,82)(43,88,48,83)(44,89,49,84)(45,90,50,85)(91,136,96,131)(92,137,97,132)(93,138,98,133)(94,139,99,134)(95,140,100,135)(101,146,106,141)(102,147,107,142)(103,148,108,143)(104,149,109,144)(105,150,110,145)(111,156,116,151)(112,157,117,152)(113,158,118,153)(114,159,119,154)(115,160,120,155), (1,133,25,150)(2,132,26,149)(3,131,27,148)(4,140,28,147)(5,139,29,146)(6,138,30,145)(7,137,21,144)(8,136,22,143)(9,135,23,142)(10,134,24,141)(11,33,158,50)(12,32,159,49)(13,31,160,48)(14,40,151,47)(15,39,152,46)(16,38,153,45)(17,37,154,44)(18,36,155,43)(19,35,156,42)(20,34,157,41)(51,95,68,102)(52,94,69,101)(53,93,70,110)(54,92,61,109)(55,91,62,108)(56,100,63,107)(57,99,64,106)(58,98,65,105)(59,97,66,104)(60,96,67,103)(71,115,88,122)(72,114,89,121)(73,113,90,130)(74,112,81,129)(75,111,82,128)(76,120,83,127)(77,119,84,126)(78,118,85,125)(79,117,86,124)(80,116,87,123), (2,10)(3,9)(4,8)(5,7)(11,153)(12,152)(13,151)(14,160)(15,159)(16,158)(17,157)(18,156)(19,155)(20,154)(21,29)(22,28)(23,27)(24,26)(31,35)(32,34)(36,40)(37,39)(41,49)(42,48)(43,47)(44,46)(51,55)(52,54)(56,60)(57,59)(61,69)(62,68)(63,67)(64,66)(71,75)(72,74)(76,80)(77,79)(81,89)(82,88)(83,87)(84,86)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,110)(99,109)(100,108)(111,127)(112,126)(113,125)(114,124)(115,123)(116,122)(117,121)(118,130)(119,129)(120,128)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,150)(139,149)(140,148)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,90,25,73)(2,81,26,74)(3,82,27,75)(4,83,28,76)(5,84,29,77)(6,85,30,78)(7,86,21,79)(8,87,22,80)(9,88,23,71)(10,89,24,72)(11,98,158,105)(12,99,159,106)(13,100,160,107)(14,91,151,108)(15,92,152,109)(16,93,153,110)(17,94,154,101)(18,95,155,102)(19,96,156,103)(20,97,157,104)(31,68,48,51)(32,69,49,52)(33,70,50,53)(34,61,41,54)(35,62,42,55)(36,63,43,56)(37,64,44,57)(38,65,45,58)(39,66,46,59)(40,67,47,60)(111,136,128,143)(112,137,129,144)(113,138,130,145)(114,139,121,146)(115,140,122,147)(116,131,123,148)(117,132,124,149)(118,133,125,150)(119,134,126,141)(120,135,127,142), (1,53,6,58)(2,54,7,59)(3,55,8,60)(4,56,9,51)(5,57,10,52)(11,125,16,130)(12,126,17,121)(13,127,18,122)(14,128,19,123)(15,129,20,124)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(41,86,46,81)(42,87,47,82)(43,88,48,83)(44,89,49,84)(45,90,50,85)(91,136,96,131)(92,137,97,132)(93,138,98,133)(94,139,99,134)(95,140,100,135)(101,146,106,141)(102,147,107,142)(103,148,108,143)(104,149,109,144)(105,150,110,145)(111,156,116,151)(112,157,117,152)(113,158,118,153)(114,159,119,154)(115,160,120,155), (1,133,25,150)(2,132,26,149)(3,131,27,148)(4,140,28,147)(5,139,29,146)(6,138,30,145)(7,137,21,144)(8,136,22,143)(9,135,23,142)(10,134,24,141)(11,33,158,50)(12,32,159,49)(13,31,160,48)(14,40,151,47)(15,39,152,46)(16,38,153,45)(17,37,154,44)(18,36,155,43)(19,35,156,42)(20,34,157,41)(51,95,68,102)(52,94,69,101)(53,93,70,110)(54,92,61,109)(55,91,62,108)(56,100,63,107)(57,99,64,106)(58,98,65,105)(59,97,66,104)(60,96,67,103)(71,115,88,122)(72,114,89,121)(73,113,90,130)(74,112,81,129)(75,111,82,128)(76,120,83,127)(77,119,84,126)(78,118,85,125)(79,117,86,124)(80,116,87,123), (2,10)(3,9)(4,8)(5,7)(11,153)(12,152)(13,151)(14,160)(15,159)(16,158)(17,157)(18,156)(19,155)(20,154)(21,29)(22,28)(23,27)(24,26)(31,35)(32,34)(36,40)(37,39)(41,49)(42,48)(43,47)(44,46)(51,55)(52,54)(56,60)(57,59)(61,69)(62,68)(63,67)(64,66)(71,75)(72,74)(76,80)(77,79)(81,89)(82,88)(83,87)(84,86)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,110)(99,109)(100,108)(111,127)(112,126)(113,125)(114,124)(115,123)(116,122)(117,121)(118,130)(119,129)(120,128)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,150)(139,149)(140,148) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,90,25,73),(2,81,26,74),(3,82,27,75),(4,83,28,76),(5,84,29,77),(6,85,30,78),(7,86,21,79),(8,87,22,80),(9,88,23,71),(10,89,24,72),(11,98,158,105),(12,99,159,106),(13,100,160,107),(14,91,151,108),(15,92,152,109),(16,93,153,110),(17,94,154,101),(18,95,155,102),(19,96,156,103),(20,97,157,104),(31,68,48,51),(32,69,49,52),(33,70,50,53),(34,61,41,54),(35,62,42,55),(36,63,43,56),(37,64,44,57),(38,65,45,58),(39,66,46,59),(40,67,47,60),(111,136,128,143),(112,137,129,144),(113,138,130,145),(114,139,121,146),(115,140,122,147),(116,131,123,148),(117,132,124,149),(118,133,125,150),(119,134,126,141),(120,135,127,142)], [(1,53,6,58),(2,54,7,59),(3,55,8,60),(4,56,9,51),(5,57,10,52),(11,125,16,130),(12,126,17,121),(13,127,18,122),(14,128,19,123),(15,129,20,124),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75),(41,86,46,81),(42,87,47,82),(43,88,48,83),(44,89,49,84),(45,90,50,85),(91,136,96,131),(92,137,97,132),(93,138,98,133),(94,139,99,134),(95,140,100,135),(101,146,106,141),(102,147,107,142),(103,148,108,143),(104,149,109,144),(105,150,110,145),(111,156,116,151),(112,157,117,152),(113,158,118,153),(114,159,119,154),(115,160,120,155)], [(1,133,25,150),(2,132,26,149),(3,131,27,148),(4,140,28,147),(5,139,29,146),(6,138,30,145),(7,137,21,144),(8,136,22,143),(9,135,23,142),(10,134,24,141),(11,33,158,50),(12,32,159,49),(13,31,160,48),(14,40,151,47),(15,39,152,46),(16,38,153,45),(17,37,154,44),(18,36,155,43),(19,35,156,42),(20,34,157,41),(51,95,68,102),(52,94,69,101),(53,93,70,110),(54,92,61,109),(55,91,62,108),(56,100,63,107),(57,99,64,106),(58,98,65,105),(59,97,66,104),(60,96,67,103),(71,115,88,122),(72,114,89,121),(73,113,90,130),(74,112,81,129),(75,111,82,128),(76,120,83,127),(77,119,84,126),(78,118,85,125),(79,117,86,124),(80,116,87,123)], [(2,10),(3,9),(4,8),(5,7),(11,153),(12,152),(13,151),(14,160),(15,159),(16,158),(17,157),(18,156),(19,155),(20,154),(21,29),(22,28),(23,27),(24,26),(31,35),(32,34),(36,40),(37,39),(41,49),(42,48),(43,47),(44,46),(51,55),(52,54),(56,60),(57,59),(61,69),(62,68),(63,67),(64,66),(71,75),(72,74),(76,80),(77,79),(81,89),(82,88),(83,87),(84,86),(91,107),(92,106),(93,105),(94,104),(95,103),(96,102),(97,101),(98,110),(99,109),(100,108),(111,127),(112,126),(113,125),(114,124),(115,123),(116,122),(117,121),(118,130),(119,129),(120,128),(131,147),(132,146),(133,145),(134,144),(135,143),(136,142),(137,141),(138,150),(139,149),(140,148)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C···4G4H···4M4N4O4P4Q5A5B10A···10F10G10H10I10J20A···20H20I···20P
order12222222444···44···444445510···101010101020···2020···20
size1111221010224···410···1020202020222···244444···48···8

53 irreducible representations

dim11111111111122222224444
type++++++++++++-++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10D10D102+ 1+4Q8×D5D46D10D5×C4○D4
kernelC10.522+ 1+4Dic5.14D4Dic54D4Dic53Q8Dic5.Q8D5×C4⋊C4D10⋊Q8C2×C10.D4C4×C5⋊D4Dic5⋊Q8D103Q8C5×C22⋊Q8C5⋊D4C22⋊Q8Dic5C22⋊C4C4⋊C4C22×C4C2×Q8C10C22C2C2
# reps12212121111142446221444

Matrix representation of C10.522+ 1+4 in GL6(𝔽41)

4000000
0400000
007700
00344000
0000400
0000040
,
4000000
3510000
001000
000100
0000346
0000197
,
3200000
0320000
0040000
0004000
00002138
00003820
,
6390000
38350000
0040000
007100
0000203
0000321
,
100000
6400000
001000
00344000
000010
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,7,34,0,0,0,0,7,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,35,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,19,0,0,0,0,6,7],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,21,38,0,0,0,0,38,20],[6,38,0,0,0,0,39,35,0,0,0,0,0,0,40,7,0,0,0,0,0,1,0,0,0,0,0,0,20,3,0,0,0,0,3,21],[1,6,0,0,0,0,0,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C10.522+ 1+4 in GAP, Magma, Sage, TeX

C_{10}._{52}2_+^{1+4}
% in TeX

G:=Group("C10.52ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1308);
// by ID

G=gap.SmallGroup(320,1308);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,570,409,80,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^5*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=a^5*b^2*d>;
// generators/relations

׿
×
𝔽