Copied to
clipboard

G = D2012D4order 320 = 26·5

5th semidirect product of D20 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2012D4, C42.172D10, C10.352- 1+4, C4⋊Q810D5, C4.73(D4×D5), (C4×D20)⋊51C2, C207(C4○D4), C57(D46D4), C20.71(C2×D4), C4⋊D2040C2, C4⋊C4.123D10, C42(Q82D5), D10.48(C2×D4), D103Q835C2, (C2×Q8).145D10, (C2×C20).103C23, (C2×C10).270C24, (C4×C20).211C22, C10.100(C22×D4), D10.13D446C2, (C2×D20).279C22, C4⋊Dic5.384C22, (Q8×C10).137C22, C22.291(C23×D5), (C2×Dic5).141C23, C10.D4.60C22, (C22×D5).241C23, D10⋊C4.151C22, C2.36(Q8.10D10), C2.73(C2×D4×D5), (D5×C4⋊C4)⋊44C2, (C5×C4⋊Q8)⋊12C2, (C2×Q82D5)⋊13C2, C10.121(C2×C4○D4), C2.28(C2×Q82D5), (C2×C4×D5).153C22, (C2×C4).93(C22×D5), (C5×C4⋊C4).213C22, SmallGroup(320,1398)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D2012D4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D2012D4
C5C2×C10 — D2012D4
C1C22C4⋊Q8

Generators and relations for D2012D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, ac=ca, dad=a9, bc=cb, dbd=a18b, dcd=c-1 >

Subgroups: 1110 in 292 conjugacy classes, 107 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, C4×D5, D20, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, D46D4, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C2×C4×D5, C2×D20, C2×D20, Q82D5, Q8×C10, C4×D20, D5×C4⋊C4, D10.13D4, C4⋊D20, D103Q8, C5×C4⋊Q8, C2×Q82D5, D2012D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2- 1+4, C22×D5, D46D4, D4×D5, Q82D5, C23×D5, C2×D4×D5, C2×Q82D5, Q8.10D10, D2012D4

Smallest permutation representation of D2012D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 135)(2 134)(3 133)(4 132)(5 131)(6 130)(7 129)(8 128)(9 127)(10 126)(11 125)(12 124)(13 123)(14 122)(15 121)(16 140)(17 139)(18 138)(19 137)(20 136)(21 45)(22 44)(23 43)(24 42)(25 41)(26 60)(27 59)(28 58)(29 57)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 50)(37 49)(38 48)(39 47)(40 46)(61 154)(62 153)(63 152)(64 151)(65 150)(66 149)(67 148)(68 147)(69 146)(70 145)(71 144)(72 143)(73 142)(74 141)(75 160)(76 159)(77 158)(78 157)(79 156)(80 155)(81 105)(82 104)(83 103)(84 102)(85 101)(86 120)(87 119)(88 118)(89 117)(90 116)(91 115)(92 114)(93 113)(94 112)(95 111)(96 110)(97 109)(98 108)(99 107)(100 106)
(1 22 99 73)(2 23 100 74)(3 24 81 75)(4 25 82 76)(5 26 83 77)(6 27 84 78)(7 28 85 79)(8 29 86 80)(9 30 87 61)(10 31 88 62)(11 32 89 63)(12 33 90 64)(13 34 91 65)(14 35 92 66)(15 36 93 67)(16 37 94 68)(17 38 95 69)(18 39 96 70)(19 40 97 71)(20 21 98 72)(41 104 159 132)(42 105 160 133)(43 106 141 134)(44 107 142 135)(45 108 143 136)(46 109 144 137)(47 110 145 138)(48 111 146 139)(49 112 147 140)(50 113 148 121)(51 114 149 122)(52 115 150 123)(53 116 151 124)(54 117 152 125)(55 118 153 126)(56 119 154 127)(57 120 155 128)(58 101 156 129)(59 102 157 130)(60 103 158 131)
(1 99)(2 88)(3 97)(4 86)(5 95)(6 84)(7 93)(8 82)(9 91)(10 100)(11 89)(12 98)(13 87)(14 96)(15 85)(16 94)(17 83)(18 92)(19 81)(20 90)(21 33)(23 31)(24 40)(25 29)(26 38)(28 36)(30 34)(35 39)(41 59)(42 48)(43 57)(44 46)(45 55)(47 53)(49 51)(50 60)(52 58)(54 56)(61 65)(62 74)(64 72)(66 70)(67 79)(69 77)(71 75)(76 80)(101 123)(102 132)(103 121)(104 130)(105 139)(106 128)(107 137)(108 126)(109 135)(110 124)(111 133)(112 122)(113 131)(114 140)(115 129)(116 138)(117 127)(118 136)(119 125)(120 134)(141 155)(142 144)(143 153)(145 151)(146 160)(147 149)(148 158)(150 156)(152 154)(157 159)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,135)(2,134)(3,133)(4,132)(5,131)(6,130)(7,129)(8,128)(9,127)(10,126)(11,125)(12,124)(13,123)(14,122)(15,121)(16,140)(17,139)(18,138)(19,137)(20,136)(21,45)(22,44)(23,43)(24,42)(25,41)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(61,154)(62,153)(63,152)(64,151)(65,150)(66,149)(67,148)(68,147)(69,146)(70,145)(71,144)(72,143)(73,142)(74,141)(75,160)(76,159)(77,158)(78,157)(79,156)(80,155)(81,105)(82,104)(83,103)(84,102)(85,101)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,112)(95,111)(96,110)(97,109)(98,108)(99,107)(100,106), (1,22,99,73)(2,23,100,74)(3,24,81,75)(4,25,82,76)(5,26,83,77)(6,27,84,78)(7,28,85,79)(8,29,86,80)(9,30,87,61)(10,31,88,62)(11,32,89,63)(12,33,90,64)(13,34,91,65)(14,35,92,66)(15,36,93,67)(16,37,94,68)(17,38,95,69)(18,39,96,70)(19,40,97,71)(20,21,98,72)(41,104,159,132)(42,105,160,133)(43,106,141,134)(44,107,142,135)(45,108,143,136)(46,109,144,137)(47,110,145,138)(48,111,146,139)(49,112,147,140)(50,113,148,121)(51,114,149,122)(52,115,150,123)(53,116,151,124)(54,117,152,125)(55,118,153,126)(56,119,154,127)(57,120,155,128)(58,101,156,129)(59,102,157,130)(60,103,158,131), (1,99)(2,88)(3,97)(4,86)(5,95)(6,84)(7,93)(8,82)(9,91)(10,100)(11,89)(12,98)(13,87)(14,96)(15,85)(16,94)(17,83)(18,92)(19,81)(20,90)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39)(41,59)(42,48)(43,57)(44,46)(45,55)(47,53)(49,51)(50,60)(52,58)(54,56)(61,65)(62,74)(64,72)(66,70)(67,79)(69,77)(71,75)(76,80)(101,123)(102,132)(103,121)(104,130)(105,139)(106,128)(107,137)(108,126)(109,135)(110,124)(111,133)(112,122)(113,131)(114,140)(115,129)(116,138)(117,127)(118,136)(119,125)(120,134)(141,155)(142,144)(143,153)(145,151)(146,160)(147,149)(148,158)(150,156)(152,154)(157,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,135)(2,134)(3,133)(4,132)(5,131)(6,130)(7,129)(8,128)(9,127)(10,126)(11,125)(12,124)(13,123)(14,122)(15,121)(16,140)(17,139)(18,138)(19,137)(20,136)(21,45)(22,44)(23,43)(24,42)(25,41)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(61,154)(62,153)(63,152)(64,151)(65,150)(66,149)(67,148)(68,147)(69,146)(70,145)(71,144)(72,143)(73,142)(74,141)(75,160)(76,159)(77,158)(78,157)(79,156)(80,155)(81,105)(82,104)(83,103)(84,102)(85,101)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,112)(95,111)(96,110)(97,109)(98,108)(99,107)(100,106), (1,22,99,73)(2,23,100,74)(3,24,81,75)(4,25,82,76)(5,26,83,77)(6,27,84,78)(7,28,85,79)(8,29,86,80)(9,30,87,61)(10,31,88,62)(11,32,89,63)(12,33,90,64)(13,34,91,65)(14,35,92,66)(15,36,93,67)(16,37,94,68)(17,38,95,69)(18,39,96,70)(19,40,97,71)(20,21,98,72)(41,104,159,132)(42,105,160,133)(43,106,141,134)(44,107,142,135)(45,108,143,136)(46,109,144,137)(47,110,145,138)(48,111,146,139)(49,112,147,140)(50,113,148,121)(51,114,149,122)(52,115,150,123)(53,116,151,124)(54,117,152,125)(55,118,153,126)(56,119,154,127)(57,120,155,128)(58,101,156,129)(59,102,157,130)(60,103,158,131), (1,99)(2,88)(3,97)(4,86)(5,95)(6,84)(7,93)(8,82)(9,91)(10,100)(11,89)(12,98)(13,87)(14,96)(15,85)(16,94)(17,83)(18,92)(19,81)(20,90)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39)(41,59)(42,48)(43,57)(44,46)(45,55)(47,53)(49,51)(50,60)(52,58)(54,56)(61,65)(62,74)(64,72)(66,70)(67,79)(69,77)(71,75)(76,80)(101,123)(102,132)(103,121)(104,130)(105,139)(106,128)(107,137)(108,126)(109,135)(110,124)(111,133)(112,122)(113,131)(114,140)(115,129)(116,138)(117,127)(118,136)(119,125)(120,134)(141,155)(142,144)(143,153)(145,151)(146,160)(147,149)(148,158)(150,156)(152,154)(157,159) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,135),(2,134),(3,133),(4,132),(5,131),(6,130),(7,129),(8,128),(9,127),(10,126),(11,125),(12,124),(13,123),(14,122),(15,121),(16,140),(17,139),(18,138),(19,137),(20,136),(21,45),(22,44),(23,43),(24,42),(25,41),(26,60),(27,59),(28,58),(29,57),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,50),(37,49),(38,48),(39,47),(40,46),(61,154),(62,153),(63,152),(64,151),(65,150),(66,149),(67,148),(68,147),(69,146),(70,145),(71,144),(72,143),(73,142),(74,141),(75,160),(76,159),(77,158),(78,157),(79,156),(80,155),(81,105),(82,104),(83,103),(84,102),(85,101),(86,120),(87,119),(88,118),(89,117),(90,116),(91,115),(92,114),(93,113),(94,112),(95,111),(96,110),(97,109),(98,108),(99,107),(100,106)], [(1,22,99,73),(2,23,100,74),(3,24,81,75),(4,25,82,76),(5,26,83,77),(6,27,84,78),(7,28,85,79),(8,29,86,80),(9,30,87,61),(10,31,88,62),(11,32,89,63),(12,33,90,64),(13,34,91,65),(14,35,92,66),(15,36,93,67),(16,37,94,68),(17,38,95,69),(18,39,96,70),(19,40,97,71),(20,21,98,72),(41,104,159,132),(42,105,160,133),(43,106,141,134),(44,107,142,135),(45,108,143,136),(46,109,144,137),(47,110,145,138),(48,111,146,139),(49,112,147,140),(50,113,148,121),(51,114,149,122),(52,115,150,123),(53,116,151,124),(54,117,152,125),(55,118,153,126),(56,119,154,127),(57,120,155,128),(58,101,156,129),(59,102,157,130),(60,103,158,131)], [(1,99),(2,88),(3,97),(4,86),(5,95),(6,84),(7,93),(8,82),(9,91),(10,100),(11,89),(12,98),(13,87),(14,96),(15,85),(16,94),(17,83),(18,92),(19,81),(20,90),(21,33),(23,31),(24,40),(25,29),(26,38),(28,36),(30,34),(35,39),(41,59),(42,48),(43,57),(44,46),(45,55),(47,53),(49,51),(50,60),(52,58),(54,56),(61,65),(62,74),(64,72),(66,70),(67,79),(69,77),(71,75),(76,80),(101,123),(102,132),(103,121),(104,130),(105,139),(106,128),(107,137),(108,126),(109,135),(110,124),(111,133),(112,122),(113,131),(114,140),(115,129),(116,138),(117,127),(118,136),(119,125),(120,134),(141,155),(142,144),(143,153),(145,151),(146,160),(147,149),(148,158),(150,156),(152,154),(157,159)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E···4I4J4K4L4M4N4O5A5B10A···10F20A···20L20M···20T
order122222222244444···44444445510···1020···2020···20
size111110101010202022224···4101010102020222···24···48···8

53 irreducible representations

dim111111112222224444
type+++++++++++++-++
imageC1C2C2C2C2C2C2C2D4D5C4○D4D10D10D102- 1+4D4×D5Q82D5Q8.10D10
kernelD2012D4C4×D20D5×C4⋊C4D10.13D4C4⋊D20D103Q8C5×C4⋊Q8C2×Q82D5D20C4⋊Q8C20C42C4⋊C4C2×Q8C10C4C4C2
# reps122422124242841444

Matrix representation of D2012D4 in GL6(𝔽41)

100000
010000
0014000
0083400
0000320
000029
,
100000
010000
001000
0084000
0000321
000029
,
1390000
1400000
0040000
0004000
000010
000001
,
4000000
4010000
0034100
0034700
000010
00001840

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,40,34,0,0,0,0,0,0,32,2,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,0,40,0,0,0,0,0,0,32,2,0,0,0,0,1,9],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,40,0,0,0,0,0,1,0,0,0,0,0,0,34,34,0,0,0,0,1,7,0,0,0,0,0,0,1,18,0,0,0,0,0,40] >;

D2012D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_{12}D_4
% in TeX

G:=Group("D20:12D4");
// GroupNames label

G:=SmallGroup(320,1398);
// by ID

G=gap.SmallGroup(320,1398);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,1571,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^9,b*c=c*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽