Extensions 1→N→G→Q→1 with N=C2 and Q=D4.F5

Direct product G=N×Q with N=C2 and Q=D4.F5
dρLabelID
C2×D4.F5160C2xD4.F5320,1593


Non-split extensions G=N.Q with N=C2 and Q=D4.F5
extensionφ:Q→Aut NdρLabelID
C2.1(D4.F5) = Dic5.C42central extension (φ=1)160C2.1(D4.F5)320,1029
C2.2(D4.F5) = C5⋊C88D4central extension (φ=1)160C2.2(D4.F5)320,1030
C2.3(D4.F5) = D10.C42central extension (φ=1)160C2.3(D4.F5)320,1039
C2.4(D4.F5) = Dic10⋊C8central extension (φ=1)320C2.4(D4.F5)320,1041
C2.5(D4.F5) = D4×C5⋊C8central extension (φ=1)160C2.5(D4.F5)320,1110
C2.6(D4.F5) = C5⋊C8⋊D4central stem extension (φ=1)160C2.6(D4.F5)320,1031
C2.7(D4.F5) = D10⋊M4(2)central stem extension (φ=1)160C2.7(D4.F5)320,1032
C2.8(D4.F5) = Dic5⋊M4(2)central stem extension (φ=1)160C2.8(D4.F5)320,1033
C2.9(D4.F5) = C20⋊C8⋊C2central stem extension (φ=1)160C2.9(D4.F5)320,1034
C2.10(D4.F5) = C23.(C2×F5)central stem extension (φ=1)160C2.10(D4.F5)320,1035
C2.11(D4.F5) = C4⋊C4.7F5central stem extension (φ=1)160C2.11(D4.F5)320,1044
C2.12(D4.F5) = Dic5.M4(2)central stem extension (φ=1)320C2.12(D4.F5)320,1045
C2.13(D4.F5) = C4⋊C4.9F5central stem extension (φ=1)160C2.13(D4.F5)320,1046
C2.14(D4.F5) = C20.M4(2)central stem extension (φ=1)320C2.14(D4.F5)320,1047
C2.15(D4.F5) = C5⋊C87D4central stem extension (φ=1)160C2.15(D4.F5)320,1111
C2.16(D4.F5) = C202M4(2)central stem extension (φ=1)160C2.16(D4.F5)320,1112
C2.17(D4.F5) = (C2×D4).7F5central stem extension (φ=1)160C2.17(D4.F5)320,1113
C2.18(D4.F5) = (C2×D4).8F5central stem extension (φ=1)160C2.18(D4.F5)320,1114

׿
×
𝔽