metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊2M4(2), C5⋊C8⋊3D4, C5⋊3(C8⋊6D4), C20⋊C8⋊6C2, (C2×D4).6F5, C2.28(D4×F5), (D4×C10).9C4, C10.28(C4×D4), C4⋊Dic5.14C4, C4⋊1(C22.F5), C23.12(C2×F5), C23.D5.7C4, C10.16(C8○D4), (D4×Dic5).18C2, Dic5.80(C2×D4), C2.16(D4.F5), C10.31(C2×M4(2)), C23.2F5⋊10C2, Dic5.59(C4○D4), C22.92(C22×F5), (C4×Dic5).195C22, (C2×Dic5).353C23, (C22×Dic5).186C22, (C4×C5⋊C8)⋊6C2, (C2×C4).81(C2×F5), (C2×C20).55(C2×C4), (C2×C5⋊C8).10C22, (C2×C22.F5)⋊5C2, C2.10(C2×C22.F5), (C22×C10).25(C2×C4), (C2×C10).77(C22×C4), (C2×Dic5).72(C2×C4), SmallGroup(320,1112)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C20⋊2M4(2)
G = < a,b,c | a20=b8=c2=1, bab-1=a3, cac=a11, cbc=b5 >
Subgroups: 394 in 122 conjugacy classes, 48 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, Dic5, Dic5, C20, C2×C10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C5⋊C8, C5⋊C8, C2×Dic5, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C8⋊6D4, C4×Dic5, C4⋊Dic5, C23.D5, C2×C5⋊C8, C2×C5⋊C8, C22.F5, C22×Dic5, D4×C10, C4×C5⋊C8, C20⋊C8, C23.2F5, D4×Dic5, C2×C22.F5, C20⋊2M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5, C8⋊6D4, C22.F5, C22×F5, D4.F5, D4×F5, C2×C22.F5, C20⋊2M4(2)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 155 28 107 52 72 98 133)(2 142 37 110 53 79 87 136)(3 149 26 113 54 66 96 139)(4 156 35 116 55 73 85 122)(5 143 24 119 56 80 94 125)(6 150 33 102 57 67 83 128)(7 157 22 105 58 74 92 131)(8 144 31 108 59 61 81 134)(9 151 40 111 60 68 90 137)(10 158 29 114 41 75 99 140)(11 145 38 117 42 62 88 123)(12 152 27 120 43 69 97 126)(13 159 36 103 44 76 86 129)(14 146 25 106 45 63 95 132)(15 153 34 109 46 70 84 135)(16 160 23 112 47 77 93 138)(17 147 32 115 48 64 82 121)(18 154 21 118 49 71 91 124)(19 141 30 101 50 78 100 127)(20 148 39 104 51 65 89 130)
(1 6)(2 17)(3 8)(4 19)(5 10)(7 12)(9 14)(11 16)(13 18)(15 20)(21 36)(22 27)(23 38)(24 29)(25 40)(26 31)(28 33)(30 35)(32 37)(34 39)(41 56)(42 47)(43 58)(44 49)(45 60)(46 51)(48 53)(50 55)(52 57)(54 59)(61 149)(62 160)(63 151)(64 142)(65 153)(66 144)(67 155)(68 146)(69 157)(70 148)(71 159)(72 150)(73 141)(74 152)(75 143)(76 154)(77 145)(78 156)(79 147)(80 158)(81 96)(82 87)(83 98)(84 89)(85 100)(86 91)(88 93)(90 95)(92 97)(94 99)(101 122)(102 133)(103 124)(104 135)(105 126)(106 137)(107 128)(108 139)(109 130)(110 121)(111 132)(112 123)(113 134)(114 125)(115 136)(116 127)(117 138)(118 129)(119 140)(120 131)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,155,28,107,52,72,98,133)(2,142,37,110,53,79,87,136)(3,149,26,113,54,66,96,139)(4,156,35,116,55,73,85,122)(5,143,24,119,56,80,94,125)(6,150,33,102,57,67,83,128)(7,157,22,105,58,74,92,131)(8,144,31,108,59,61,81,134)(9,151,40,111,60,68,90,137)(10,158,29,114,41,75,99,140)(11,145,38,117,42,62,88,123)(12,152,27,120,43,69,97,126)(13,159,36,103,44,76,86,129)(14,146,25,106,45,63,95,132)(15,153,34,109,46,70,84,135)(16,160,23,112,47,77,93,138)(17,147,32,115,48,64,82,121)(18,154,21,118,49,71,91,124)(19,141,30,101,50,78,100,127)(20,148,39,104,51,65,89,130), (1,6)(2,17)(3,8)(4,19)(5,10)(7,12)(9,14)(11,16)(13,18)(15,20)(21,36)(22,27)(23,38)(24,29)(25,40)(26,31)(28,33)(30,35)(32,37)(34,39)(41,56)(42,47)(43,58)(44,49)(45,60)(46,51)(48,53)(50,55)(52,57)(54,59)(61,149)(62,160)(63,151)(64,142)(65,153)(66,144)(67,155)(68,146)(69,157)(70,148)(71,159)(72,150)(73,141)(74,152)(75,143)(76,154)(77,145)(78,156)(79,147)(80,158)(81,96)(82,87)(83,98)(84,89)(85,100)(86,91)(88,93)(90,95)(92,97)(94,99)(101,122)(102,133)(103,124)(104,135)(105,126)(106,137)(107,128)(108,139)(109,130)(110,121)(111,132)(112,123)(113,134)(114,125)(115,136)(116,127)(117,138)(118,129)(119,140)(120,131)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,155,28,107,52,72,98,133)(2,142,37,110,53,79,87,136)(3,149,26,113,54,66,96,139)(4,156,35,116,55,73,85,122)(5,143,24,119,56,80,94,125)(6,150,33,102,57,67,83,128)(7,157,22,105,58,74,92,131)(8,144,31,108,59,61,81,134)(9,151,40,111,60,68,90,137)(10,158,29,114,41,75,99,140)(11,145,38,117,42,62,88,123)(12,152,27,120,43,69,97,126)(13,159,36,103,44,76,86,129)(14,146,25,106,45,63,95,132)(15,153,34,109,46,70,84,135)(16,160,23,112,47,77,93,138)(17,147,32,115,48,64,82,121)(18,154,21,118,49,71,91,124)(19,141,30,101,50,78,100,127)(20,148,39,104,51,65,89,130), (1,6)(2,17)(3,8)(4,19)(5,10)(7,12)(9,14)(11,16)(13,18)(15,20)(21,36)(22,27)(23,38)(24,29)(25,40)(26,31)(28,33)(30,35)(32,37)(34,39)(41,56)(42,47)(43,58)(44,49)(45,60)(46,51)(48,53)(50,55)(52,57)(54,59)(61,149)(62,160)(63,151)(64,142)(65,153)(66,144)(67,155)(68,146)(69,157)(70,148)(71,159)(72,150)(73,141)(74,152)(75,143)(76,154)(77,145)(78,156)(79,147)(80,158)(81,96)(82,87)(83,98)(84,89)(85,100)(86,91)(88,93)(90,95)(92,97)(94,99)(101,122)(102,133)(103,124)(104,135)(105,126)(106,137)(107,128)(108,139)(109,130)(110,121)(111,132)(112,123)(113,134)(114,125)(115,136)(116,127)(117,138)(118,129)(119,140)(120,131) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,155,28,107,52,72,98,133),(2,142,37,110,53,79,87,136),(3,149,26,113,54,66,96,139),(4,156,35,116,55,73,85,122),(5,143,24,119,56,80,94,125),(6,150,33,102,57,67,83,128),(7,157,22,105,58,74,92,131),(8,144,31,108,59,61,81,134),(9,151,40,111,60,68,90,137),(10,158,29,114,41,75,99,140),(11,145,38,117,42,62,88,123),(12,152,27,120,43,69,97,126),(13,159,36,103,44,76,86,129),(14,146,25,106,45,63,95,132),(15,153,34,109,46,70,84,135),(16,160,23,112,47,77,93,138),(17,147,32,115,48,64,82,121),(18,154,21,118,49,71,91,124),(19,141,30,101,50,78,100,127),(20,148,39,104,51,65,89,130)], [(1,6),(2,17),(3,8),(4,19),(5,10),(7,12),(9,14),(11,16),(13,18),(15,20),(21,36),(22,27),(23,38),(24,29),(25,40),(26,31),(28,33),(30,35),(32,37),(34,39),(41,56),(42,47),(43,58),(44,49),(45,60),(46,51),(48,53),(50,55),(52,57),(54,59),(61,149),(62,160),(63,151),(64,142),(65,153),(66,144),(67,155),(68,146),(69,157),(70,148),(71,159),(72,150),(73,141),(74,152),(75,143),(76,154),(77,145),(78,156),(79,147),(80,158),(81,96),(82,87),(83,98),(84,89),(85,100),(86,91),(88,93),(90,95),(92,97),(94,99),(101,122),(102,133),(103,124),(104,135),(105,126),(106,137),(107,128),(108,139),(109,130),(110,121),(111,132),(112,123),(113,134),(114,125),(115,136),(116,127),(117,138),(118,129),(119,140),(120,131)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 20A | 20B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 20 | 20 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | - | - | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | C4○D4 | M4(2) | C8○D4 | F5 | C2×F5 | C2×F5 | C22.F5 | D4.F5 | D4×F5 |
kernel | C20⋊2M4(2) | C4×C5⋊C8 | C20⋊C8 | C23.2F5 | D4×Dic5 | C2×C22.F5 | C4⋊Dic5 | C23.D5 | D4×C10 | C5⋊C8 | Dic5 | C20 | C10 | C2×D4 | C2×C4 | C23 | C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 4 | 1 | 1 |
Matrix representation of C20⋊2M4(2) ►in GL8(𝔽41)
1 | 39 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 1 |
40 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 19 | 0 | 0 | 0 | 0 |
0 | 0 | 25 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 37 | 14 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 16 | 29 | 39 |
0 | 0 | 0 | 0 | 25 | 12 | 2 | 2 |
0 | 0 | 0 | 0 | 39 | 16 | 4 | 27 |
40 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(8,GF(41))| [1,1,0,0,0,0,0,0,39,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,1,1,1],[40,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,34,25,0,0,0,0,0,0,19,7,0,0,0,0,0,0,0,0,37,0,25,39,0,0,0,0,14,16,12,16,0,0,0,0,4,29,2,4,0,0,0,0,2,39,2,27],[40,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;
C20⋊2M4(2) in GAP, Magma, Sage, TeX
C_{20}\rtimes_2M_4(2)
% in TeX
G:=Group("C20:2M4(2)");
// GroupNames label
G:=SmallGroup(320,1112);
// by ID
G=gap.SmallGroup(320,1112);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,758,219,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^3,c*a*c=a^11,c*b*c=b^5>;
// generators/relations