metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊C8⋊7D4, C5⋊4(C8⋊9D4), (C2×D4).5F5, C2.27(D4×F5), (D4×C10).4C4, C10.27(C4×D4), C4⋊Dic5.7C4, (C2×C10)⋊2M4(2), C23.D5.6C4, C23.11(C2×F5), Dic5⋊C8⋊3C2, C10.15(C8○D4), Dic5.79(C2×D4), (D4×Dic5).10C2, C2.15(D4.F5), C23.2F5⋊9C2, C10.C42⋊4C2, C10.30(C2×M4(2)), C22⋊1(C22.F5), Dic5.58(C4○D4), C22.91(C22×F5), (C4×Dic5).69C22, (C2×Dic5).352C23, (C22×Dic5).185C22, (C22×C5⋊C8)⋊5C2, (C2×C4).36(C2×F5), (C2×C20).23(C2×C4), (C2×C5⋊C8).40C22, (C2×C22.F5)⋊4C2, C2.9(C2×C22.F5), (C22×C10).24(C2×C4), (C2×C10).76(C22×C4), (C2×Dic5).71(C2×C4), SmallGroup(320,1111)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C22×C5⋊C8 — C5⋊C8⋊7D4 |
Generators and relations for C5⋊C8⋊7D4
G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a3, ac=ca, ad=da, cbc-1=b5, bd=db, dcd=c-1 >
Subgroups: 394 in 124 conjugacy classes, 48 normal (42 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8, C5⋊C8, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C8⋊9D4, C4×Dic5, C4⋊Dic5, C23.D5, C2×C5⋊C8, C2×C5⋊C8, C22.F5, C22×Dic5, D4×C10, C10.C42, Dic5⋊C8, C23.2F5, D4×Dic5, C22×C5⋊C8, C2×C22.F5, C5⋊C8⋊7D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5, C8⋊9D4, C22.F5, C22×F5, D4.F5, D4×F5, C2×C22.F5, C5⋊C8⋊7D4
(1 65 85 36 159)(2 37 66 160 86)(3 153 38 87 67)(4 88 154 68 39)(5 69 81 40 155)(6 33 70 156 82)(7 157 34 83 71)(8 84 158 72 35)(9 104 141 130 48)(10 131 97 41 142)(11 42 132 143 98)(12 144 43 99 133)(13 100 137 134 44)(14 135 101 45 138)(15 46 136 139 102)(16 140 47 103 129)(17 56 145 105 77)(18 106 49 78 146)(19 79 107 147 50)(20 148 80 51 108)(21 52 149 109 73)(22 110 53 74 150)(23 75 111 151 54)(24 152 76 55 112)(25 124 60 119 89)(26 120 125 90 61)(27 91 113 62 126)(28 63 92 127 114)(29 128 64 115 93)(30 116 121 94 57)(31 95 117 58 122)(32 59 96 123 118)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 78 11 93)(2 75 12 90)(3 80 13 95)(4 77 14 92)(5 74 15 89)(6 79 16 94)(7 76 9 91)(8 73 10 96)(17 135 127 88)(18 132 128 85)(19 129 121 82)(20 134 122 87)(21 131 123 84)(22 136 124 81)(23 133 125 86)(24 130 126 83)(25 69 150 46)(26 66 151 43)(27 71 152 48)(28 68 145 45)(29 65 146 42)(30 70 147 47)(31 67 148 44)(32 72 149 41)(33 107 140 57)(34 112 141 62)(35 109 142 59)(36 106 143 64)(37 111 144 61)(38 108 137 58)(39 105 138 63)(40 110 139 60)(49 98 115 159)(50 103 116 156)(51 100 117 153)(52 97 118 158)(53 102 119 155)(54 99 120 160)(55 104 113 157)(56 101 114 154)
(1 93)(2 94)(3 95)(4 96)(5 89)(6 90)(7 91)(8 92)(9 76)(10 77)(11 78)(12 79)(13 80)(14 73)(15 74)(16 75)(17 131)(18 132)(19 133)(20 134)(21 135)(22 136)(23 129)(24 130)(25 69)(26 70)(27 71)(28 72)(29 65)(30 66)(31 67)(32 68)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)(41 145)(42 146)(43 147)(44 148)(45 149)(46 150)(47 151)(48 152)(49 98)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 97)(81 124)(82 125)(83 126)(84 127)(85 128)(86 121)(87 122)(88 123)(105 142)(106 143)(107 144)(108 137)(109 138)(110 139)(111 140)(112 141)(113 157)(114 158)(115 159)(116 160)(117 153)(118 154)(119 155)(120 156)
G:=sub<Sym(160)| (1,65,85,36,159)(2,37,66,160,86)(3,153,38,87,67)(4,88,154,68,39)(5,69,81,40,155)(6,33,70,156,82)(7,157,34,83,71)(8,84,158,72,35)(9,104,141,130,48)(10,131,97,41,142)(11,42,132,143,98)(12,144,43,99,133)(13,100,137,134,44)(14,135,101,45,138)(15,46,136,139,102)(16,140,47,103,129)(17,56,145,105,77)(18,106,49,78,146)(19,79,107,147,50)(20,148,80,51,108)(21,52,149,109,73)(22,110,53,74,150)(23,75,111,151,54)(24,152,76,55,112)(25,124,60,119,89)(26,120,125,90,61)(27,91,113,62,126)(28,63,92,127,114)(29,128,64,115,93)(30,116,121,94,57)(31,95,117,58,122)(32,59,96,123,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,11,93)(2,75,12,90)(3,80,13,95)(4,77,14,92)(5,74,15,89)(6,79,16,94)(7,76,9,91)(8,73,10,96)(17,135,127,88)(18,132,128,85)(19,129,121,82)(20,134,122,87)(21,131,123,84)(22,136,124,81)(23,133,125,86)(24,130,126,83)(25,69,150,46)(26,66,151,43)(27,71,152,48)(28,68,145,45)(29,65,146,42)(30,70,147,47)(31,67,148,44)(32,72,149,41)(33,107,140,57)(34,112,141,62)(35,109,142,59)(36,106,143,64)(37,111,144,61)(38,108,137,58)(39,105,138,63)(40,110,139,60)(49,98,115,159)(50,103,116,156)(51,100,117,153)(52,97,118,158)(53,102,119,155)(54,99,120,160)(55,104,113,157)(56,101,114,154), (1,93)(2,94)(3,95)(4,96)(5,89)(6,90)(7,91)(8,92)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,97)(81,124)(82,125)(83,126)(84,127)(85,128)(86,121)(87,122)(88,123)(105,142)(106,143)(107,144)(108,137)(109,138)(110,139)(111,140)(112,141)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156)>;
G:=Group( (1,65,85,36,159)(2,37,66,160,86)(3,153,38,87,67)(4,88,154,68,39)(5,69,81,40,155)(6,33,70,156,82)(7,157,34,83,71)(8,84,158,72,35)(9,104,141,130,48)(10,131,97,41,142)(11,42,132,143,98)(12,144,43,99,133)(13,100,137,134,44)(14,135,101,45,138)(15,46,136,139,102)(16,140,47,103,129)(17,56,145,105,77)(18,106,49,78,146)(19,79,107,147,50)(20,148,80,51,108)(21,52,149,109,73)(22,110,53,74,150)(23,75,111,151,54)(24,152,76,55,112)(25,124,60,119,89)(26,120,125,90,61)(27,91,113,62,126)(28,63,92,127,114)(29,128,64,115,93)(30,116,121,94,57)(31,95,117,58,122)(32,59,96,123,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,11,93)(2,75,12,90)(3,80,13,95)(4,77,14,92)(5,74,15,89)(6,79,16,94)(7,76,9,91)(8,73,10,96)(17,135,127,88)(18,132,128,85)(19,129,121,82)(20,134,122,87)(21,131,123,84)(22,136,124,81)(23,133,125,86)(24,130,126,83)(25,69,150,46)(26,66,151,43)(27,71,152,48)(28,68,145,45)(29,65,146,42)(30,70,147,47)(31,67,148,44)(32,72,149,41)(33,107,140,57)(34,112,141,62)(35,109,142,59)(36,106,143,64)(37,111,144,61)(38,108,137,58)(39,105,138,63)(40,110,139,60)(49,98,115,159)(50,103,116,156)(51,100,117,153)(52,97,118,158)(53,102,119,155)(54,99,120,160)(55,104,113,157)(56,101,114,154), (1,93)(2,94)(3,95)(4,96)(5,89)(6,90)(7,91)(8,92)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,97)(81,124)(82,125)(83,126)(84,127)(85,128)(86,121)(87,122)(88,123)(105,142)(106,143)(107,144)(108,137)(109,138)(110,139)(111,140)(112,141)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156) );
G=PermutationGroup([[(1,65,85,36,159),(2,37,66,160,86),(3,153,38,87,67),(4,88,154,68,39),(5,69,81,40,155),(6,33,70,156,82),(7,157,34,83,71),(8,84,158,72,35),(9,104,141,130,48),(10,131,97,41,142),(11,42,132,143,98),(12,144,43,99,133),(13,100,137,134,44),(14,135,101,45,138),(15,46,136,139,102),(16,140,47,103,129),(17,56,145,105,77),(18,106,49,78,146),(19,79,107,147,50),(20,148,80,51,108),(21,52,149,109,73),(22,110,53,74,150),(23,75,111,151,54),(24,152,76,55,112),(25,124,60,119,89),(26,120,125,90,61),(27,91,113,62,126),(28,63,92,127,114),(29,128,64,115,93),(30,116,121,94,57),(31,95,117,58,122),(32,59,96,123,118)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,78,11,93),(2,75,12,90),(3,80,13,95),(4,77,14,92),(5,74,15,89),(6,79,16,94),(7,76,9,91),(8,73,10,96),(17,135,127,88),(18,132,128,85),(19,129,121,82),(20,134,122,87),(21,131,123,84),(22,136,124,81),(23,133,125,86),(24,130,126,83),(25,69,150,46),(26,66,151,43),(27,71,152,48),(28,68,145,45),(29,65,146,42),(30,70,147,47),(31,67,148,44),(32,72,149,41),(33,107,140,57),(34,112,141,62),(35,109,142,59),(36,106,143,64),(37,111,144,61),(38,108,137,58),(39,105,138,63),(40,110,139,60),(49,98,115,159),(50,103,116,156),(51,100,117,153),(52,97,118,158),(53,102,119,155),(54,99,120,160),(55,104,113,157),(56,101,114,154)], [(1,93),(2,94),(3,95),(4,96),(5,89),(6,90),(7,91),(8,92),(9,76),(10,77),(11,78),(12,79),(13,80),(14,73),(15,74),(16,75),(17,131),(18,132),(19,133),(20,134),(21,135),(22,136),(23,129),(24,130),(25,69),(26,70),(27,71),(28,72),(29,65),(30,66),(31,67),(32,68),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60),(41,145),(42,146),(43,147),(44,148),(45,149),(46,150),(47,151),(48,152),(49,98),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,97),(81,124),(82,125),(83,126),(84,127),(85,128),(86,121),(87,122),(88,123),(105,142),(106,143),(107,144),(108,137),(109,138),(110,139),(111,140),(112,141),(113,157),(114,158),(115,159),(116,160),(117,153),(118,154),(119,155),(120,156)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 20A | 20B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 20 | 20 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | - | - | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | C4○D4 | M4(2) | C8○D4 | F5 | C2×F5 | C2×F5 | C22.F5 | D4.F5 | D4×F5 |
kernel | C5⋊C8⋊7D4 | C10.C42 | Dic5⋊C8 | C23.2F5 | D4×Dic5 | C22×C5⋊C8 | C2×C22.F5 | C4⋊Dic5 | C23.D5 | D4×C10 | C5⋊C8 | Dic5 | C2×C10 | C10 | C2×D4 | C2×C4 | C23 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 4 | 1 | 1 |
Matrix representation of C5⋊C8⋊7D4 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 40 | 0 | 0 |
0 | 0 | 36 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
0 | 0 | 0 | 0 | 35 | 6 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 22 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,36,0,0,0,0,40,40,0,0,0,0,0,0,0,35,0,0,0,0,7,6],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,13,0,0,0,0,22,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C5⋊C8⋊7D4 in GAP, Magma, Sage, TeX
C_5\rtimes C_8\rtimes_7D_4
% in TeX
G:=Group("C5:C8:7D4");
// GroupNames label
G:=SmallGroup(320,1111);
// by ID
G=gap.SmallGroup(320,1111);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,219,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,b*d=d*b,d*c*d=c^-1>;
// generators/relations