Copied to
clipboard

G = C5⋊C87D4order 320 = 26·5

4th semidirect product of C5⋊C8 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5⋊C87D4, C54(C89D4), (C2×D4).5F5, C2.27(D4×F5), (D4×C10).4C4, C10.27(C4×D4), C4⋊Dic5.7C4, (C2×C10)⋊2M4(2), C23.D5.6C4, C23.11(C2×F5), Dic5⋊C83C2, C10.15(C8○D4), Dic5.79(C2×D4), (D4×Dic5).10C2, C2.15(D4.F5), C23.2F59C2, C10.C424C2, C10.30(C2×M4(2)), C221(C22.F5), Dic5.58(C4○D4), C22.91(C22×F5), (C4×Dic5).69C22, (C2×Dic5).352C23, (C22×Dic5).185C22, (C22×C5⋊C8)⋊5C2, (C2×C4).36(C2×F5), (C2×C20).23(C2×C4), (C2×C5⋊C8).40C22, (C2×C22.F5)⋊4C2, C2.9(C2×C22.F5), (C22×C10).24(C2×C4), (C2×C10).76(C22×C4), (C2×Dic5).71(C2×C4), SmallGroup(320,1111)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C5⋊C87D4
C1C5C10Dic5C2×Dic5C2×C5⋊C8C22×C5⋊C8 — C5⋊C87D4
C5C2×C10 — C5⋊C87D4
C1C22C2×D4

Generators and relations for C5⋊C87D4
 G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a3, ac=ca, ad=da, cbc-1=b5, bd=db, dcd=c-1 >

Subgroups: 394 in 124 conjugacy classes, 48 normal (42 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8, C5⋊C8, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C89D4, C4×Dic5, C4⋊Dic5, C23.D5, C2×C5⋊C8, C2×C5⋊C8, C22.F5, C22×Dic5, D4×C10, C10.C42, Dic5⋊C8, C23.2F5, D4×Dic5, C22×C5⋊C8, C2×C22.F5, C5⋊C87D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5, C89D4, C22.F5, C22×F5, D4.F5, D4×F5, C2×C22.F5, C5⋊C87D4

Smallest permutation representation of C5⋊C87D4
On 160 points
Generators in S160
(1 65 85 36 159)(2 37 66 160 86)(3 153 38 87 67)(4 88 154 68 39)(5 69 81 40 155)(6 33 70 156 82)(7 157 34 83 71)(8 84 158 72 35)(9 104 141 130 48)(10 131 97 41 142)(11 42 132 143 98)(12 144 43 99 133)(13 100 137 134 44)(14 135 101 45 138)(15 46 136 139 102)(16 140 47 103 129)(17 56 145 105 77)(18 106 49 78 146)(19 79 107 147 50)(20 148 80 51 108)(21 52 149 109 73)(22 110 53 74 150)(23 75 111 151 54)(24 152 76 55 112)(25 124 60 119 89)(26 120 125 90 61)(27 91 113 62 126)(28 63 92 127 114)(29 128 64 115 93)(30 116 121 94 57)(31 95 117 58 122)(32 59 96 123 118)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 78 11 93)(2 75 12 90)(3 80 13 95)(4 77 14 92)(5 74 15 89)(6 79 16 94)(7 76 9 91)(8 73 10 96)(17 135 127 88)(18 132 128 85)(19 129 121 82)(20 134 122 87)(21 131 123 84)(22 136 124 81)(23 133 125 86)(24 130 126 83)(25 69 150 46)(26 66 151 43)(27 71 152 48)(28 68 145 45)(29 65 146 42)(30 70 147 47)(31 67 148 44)(32 72 149 41)(33 107 140 57)(34 112 141 62)(35 109 142 59)(36 106 143 64)(37 111 144 61)(38 108 137 58)(39 105 138 63)(40 110 139 60)(49 98 115 159)(50 103 116 156)(51 100 117 153)(52 97 118 158)(53 102 119 155)(54 99 120 160)(55 104 113 157)(56 101 114 154)
(1 93)(2 94)(3 95)(4 96)(5 89)(6 90)(7 91)(8 92)(9 76)(10 77)(11 78)(12 79)(13 80)(14 73)(15 74)(16 75)(17 131)(18 132)(19 133)(20 134)(21 135)(22 136)(23 129)(24 130)(25 69)(26 70)(27 71)(28 72)(29 65)(30 66)(31 67)(32 68)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)(41 145)(42 146)(43 147)(44 148)(45 149)(46 150)(47 151)(48 152)(49 98)(50 99)(51 100)(52 101)(53 102)(54 103)(55 104)(56 97)(81 124)(82 125)(83 126)(84 127)(85 128)(86 121)(87 122)(88 123)(105 142)(106 143)(107 144)(108 137)(109 138)(110 139)(111 140)(112 141)(113 157)(114 158)(115 159)(116 160)(117 153)(118 154)(119 155)(120 156)

G:=sub<Sym(160)| (1,65,85,36,159)(2,37,66,160,86)(3,153,38,87,67)(4,88,154,68,39)(5,69,81,40,155)(6,33,70,156,82)(7,157,34,83,71)(8,84,158,72,35)(9,104,141,130,48)(10,131,97,41,142)(11,42,132,143,98)(12,144,43,99,133)(13,100,137,134,44)(14,135,101,45,138)(15,46,136,139,102)(16,140,47,103,129)(17,56,145,105,77)(18,106,49,78,146)(19,79,107,147,50)(20,148,80,51,108)(21,52,149,109,73)(22,110,53,74,150)(23,75,111,151,54)(24,152,76,55,112)(25,124,60,119,89)(26,120,125,90,61)(27,91,113,62,126)(28,63,92,127,114)(29,128,64,115,93)(30,116,121,94,57)(31,95,117,58,122)(32,59,96,123,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,11,93)(2,75,12,90)(3,80,13,95)(4,77,14,92)(5,74,15,89)(6,79,16,94)(7,76,9,91)(8,73,10,96)(17,135,127,88)(18,132,128,85)(19,129,121,82)(20,134,122,87)(21,131,123,84)(22,136,124,81)(23,133,125,86)(24,130,126,83)(25,69,150,46)(26,66,151,43)(27,71,152,48)(28,68,145,45)(29,65,146,42)(30,70,147,47)(31,67,148,44)(32,72,149,41)(33,107,140,57)(34,112,141,62)(35,109,142,59)(36,106,143,64)(37,111,144,61)(38,108,137,58)(39,105,138,63)(40,110,139,60)(49,98,115,159)(50,103,116,156)(51,100,117,153)(52,97,118,158)(53,102,119,155)(54,99,120,160)(55,104,113,157)(56,101,114,154), (1,93)(2,94)(3,95)(4,96)(5,89)(6,90)(7,91)(8,92)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,97)(81,124)(82,125)(83,126)(84,127)(85,128)(86,121)(87,122)(88,123)(105,142)(106,143)(107,144)(108,137)(109,138)(110,139)(111,140)(112,141)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156)>;

G:=Group( (1,65,85,36,159)(2,37,66,160,86)(3,153,38,87,67)(4,88,154,68,39)(5,69,81,40,155)(6,33,70,156,82)(7,157,34,83,71)(8,84,158,72,35)(9,104,141,130,48)(10,131,97,41,142)(11,42,132,143,98)(12,144,43,99,133)(13,100,137,134,44)(14,135,101,45,138)(15,46,136,139,102)(16,140,47,103,129)(17,56,145,105,77)(18,106,49,78,146)(19,79,107,147,50)(20,148,80,51,108)(21,52,149,109,73)(22,110,53,74,150)(23,75,111,151,54)(24,152,76,55,112)(25,124,60,119,89)(26,120,125,90,61)(27,91,113,62,126)(28,63,92,127,114)(29,128,64,115,93)(30,116,121,94,57)(31,95,117,58,122)(32,59,96,123,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,78,11,93)(2,75,12,90)(3,80,13,95)(4,77,14,92)(5,74,15,89)(6,79,16,94)(7,76,9,91)(8,73,10,96)(17,135,127,88)(18,132,128,85)(19,129,121,82)(20,134,122,87)(21,131,123,84)(22,136,124,81)(23,133,125,86)(24,130,126,83)(25,69,150,46)(26,66,151,43)(27,71,152,48)(28,68,145,45)(29,65,146,42)(30,70,147,47)(31,67,148,44)(32,72,149,41)(33,107,140,57)(34,112,141,62)(35,109,142,59)(36,106,143,64)(37,111,144,61)(38,108,137,58)(39,105,138,63)(40,110,139,60)(49,98,115,159)(50,103,116,156)(51,100,117,153)(52,97,118,158)(53,102,119,155)(54,99,120,160)(55,104,113,157)(56,101,114,154), (1,93)(2,94)(3,95)(4,96)(5,89)(6,90)(7,91)(8,92)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,98)(50,99)(51,100)(52,101)(53,102)(54,103)(55,104)(56,97)(81,124)(82,125)(83,126)(84,127)(85,128)(86,121)(87,122)(88,123)(105,142)(106,143)(107,144)(108,137)(109,138)(110,139)(111,140)(112,141)(113,157)(114,158)(115,159)(116,160)(117,153)(118,154)(119,155)(120,156) );

G=PermutationGroup([[(1,65,85,36,159),(2,37,66,160,86),(3,153,38,87,67),(4,88,154,68,39),(5,69,81,40,155),(6,33,70,156,82),(7,157,34,83,71),(8,84,158,72,35),(9,104,141,130,48),(10,131,97,41,142),(11,42,132,143,98),(12,144,43,99,133),(13,100,137,134,44),(14,135,101,45,138),(15,46,136,139,102),(16,140,47,103,129),(17,56,145,105,77),(18,106,49,78,146),(19,79,107,147,50),(20,148,80,51,108),(21,52,149,109,73),(22,110,53,74,150),(23,75,111,151,54),(24,152,76,55,112),(25,124,60,119,89),(26,120,125,90,61),(27,91,113,62,126),(28,63,92,127,114),(29,128,64,115,93),(30,116,121,94,57),(31,95,117,58,122),(32,59,96,123,118)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,78,11,93),(2,75,12,90),(3,80,13,95),(4,77,14,92),(5,74,15,89),(6,79,16,94),(7,76,9,91),(8,73,10,96),(17,135,127,88),(18,132,128,85),(19,129,121,82),(20,134,122,87),(21,131,123,84),(22,136,124,81),(23,133,125,86),(24,130,126,83),(25,69,150,46),(26,66,151,43),(27,71,152,48),(28,68,145,45),(29,65,146,42),(30,70,147,47),(31,67,148,44),(32,72,149,41),(33,107,140,57),(34,112,141,62),(35,109,142,59),(36,106,143,64),(37,111,144,61),(38,108,137,58),(39,105,138,63),(40,110,139,60),(49,98,115,159),(50,103,116,156),(51,100,117,153),(52,97,118,158),(53,102,119,155),(54,99,120,160),(55,104,113,157),(56,101,114,154)], [(1,93),(2,94),(3,95),(4,96),(5,89),(6,90),(7,91),(8,92),(9,76),(10,77),(11,78),(12,79),(13,80),(14,73),(15,74),(16,75),(17,131),(18,132),(19,133),(20,134),(21,135),(22,136),(23,129),(24,130),(25,69),(26,70),(27,71),(28,72),(29,65),(30,66),(31,67),(32,68),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60),(41,145),(42,146),(43,147),(44,148),(45,149),(46,150),(47,151),(48,152),(49,98),(50,99),(51,100),(52,101),(53,102),(54,103),(55,104),(56,97),(81,124),(82,125),(83,126),(84,127),(85,128),(86,121),(87,122),(88,123),(105,142),(106,143),(107,144),(108,137),(109,138),(110,139),(111,140),(112,141),(113,157),(114,158),(115,159),(116,160),(117,153),(118,154),(119,155),(120,156)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I 5 8A···8H8I8J8K8L10A10B10C10D10E10F10G20A20B
order122222244444444458···88888101010101010102020
size11112244555510102020410···1020202020444888888

38 irreducible representations

dim11111111112222444488
type+++++++++++--+
imageC1C2C2C2C2C2C2C4C4C4D4C4○D4M4(2)C8○D4F5C2×F5C2×F5C22.F5D4.F5D4×F5
kernelC5⋊C87D4C10.C42Dic5⋊C8C23.2F5D4×Dic5C22×C5⋊C8C2×C22.F5C4⋊Dic5C23.D5D4×C10C5⋊C8Dic5C2×C10C10C2×D4C2×C4C23C22C2C2
# reps11121112422244112411

Matrix representation of C5⋊C87D4 in GL6(𝔽41)

100000
010000
00354000
00364000
000007
0000356
,
3200000
0320000
000010
000001
0002200
0013000
,
010000
4000000
001000
000100
0000400
0000040
,
010000
100000
001000
000100
000010
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,36,0,0,0,0,40,40,0,0,0,0,0,0,0,35,0,0,0,0,7,6],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,13,0,0,0,0,22,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C5⋊C87D4 in GAP, Magma, Sage, TeX

C_5\rtimes C_8\rtimes_7D_4
% in TeX

G:=Group("C5:C8:7D4");
// GroupNames label

G:=SmallGroup(320,1111);
// by ID

G=gap.SmallGroup(320,1111);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,219,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽