metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊C8⋊11C2, C22⋊C4.5F5, C10.6(C8○D4), C2.9(D4.F5), C23.D5.3C4, C23.26(C2×F5), Dic5⋊C8⋊8C2, Dic5.9(C4⋊C4), (C2×Dic5).13Q8, Dic5.11(C2×Q8), Dic5.29(C2×D4), C10.D4.3C4, C22.12(C4⋊F5), (C2×Dic5).114D4, C22.72(C22×F5), C5⋊1(C42.6C22), (C2×Dic5).326C23, (C4×Dic5).242C22, C23.11D10.6C2, (C22×Dic5).181C22, C10.7(C2×C4⋊C4), C2.10(C2×C4⋊F5), (C2×C5⋊C8).5C22, (C22×C5⋊C8).3C2, (C2×C4).23(C2×F5), (C2×C10).5(C4⋊C4), (C2×C20).81(C2×C4), (C5×C22⋊C4).3C4, (C2×C22.F5).4C2, (C22×C10).17(C2×C4), (C2×C10).34(C22×C4), (C2×Dic5).51(C2×C4), SmallGroup(320,1034)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C22×C5⋊C8 — C20⋊C8⋊C2 |
Generators and relations for C20⋊C8⋊C2
G = < a,b,c | a20=b8=c2=1, bab-1=a3, cac=ab4, cbc=b5 >
Subgroups: 346 in 114 conjugacy classes, 52 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, Dic5, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C4⋊C8, C42⋊C2, C22×C8, C2×M4(2), C5⋊C8, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C42.6C22, C4×Dic5, C10.D4, C23.D5, C5×C22⋊C4, C2×C5⋊C8, C2×C5⋊C8, C2×C5⋊C8, C22.F5, C22×Dic5, C20⋊C8, Dic5⋊C8, C23.11D10, C22×C5⋊C8, C2×C22.F5, C20⋊C8⋊C2
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, F5, C2×C4⋊C4, C8○D4, C2×F5, C42.6C22, C4⋊F5, C22×F5, C2×C4⋊F5, D4.F5, C20⋊C8⋊C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 51 65 125 102 26 100 148)(2 58 74 128 103 33 89 151)(3 45 63 131 104 40 98 154)(4 52 72 134 105 27 87 157)(5 59 61 137 106 34 96 160)(6 46 70 140 107 21 85 143)(7 53 79 123 108 28 94 146)(8 60 68 126 109 35 83 149)(9 47 77 129 110 22 92 152)(10 54 66 132 111 29 81 155)(11 41 75 135 112 36 90 158)(12 48 64 138 113 23 99 141)(13 55 73 121 114 30 88 144)(14 42 62 124 115 37 97 147)(15 49 71 127 116 24 86 150)(16 56 80 130 117 31 95 153)(17 43 69 133 118 38 84 156)(18 50 78 136 119 25 93 159)(19 57 67 139 120 32 82 142)(20 44 76 122 101 39 91 145)
(2 103)(4 105)(6 107)(8 109)(10 111)(12 113)(14 115)(16 117)(18 119)(20 101)(22 47)(24 49)(26 51)(28 53)(30 55)(32 57)(34 59)(36 41)(38 43)(40 45)(62 97)(64 99)(66 81)(68 83)(70 85)(72 87)(74 89)(76 91)(78 93)(80 95)(121 144)(123 146)(125 148)(127 150)(129 152)(131 154)(133 156)(135 158)(137 160)(139 142)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,51,65,125,102,26,100,148)(2,58,74,128,103,33,89,151)(3,45,63,131,104,40,98,154)(4,52,72,134,105,27,87,157)(5,59,61,137,106,34,96,160)(6,46,70,140,107,21,85,143)(7,53,79,123,108,28,94,146)(8,60,68,126,109,35,83,149)(9,47,77,129,110,22,92,152)(10,54,66,132,111,29,81,155)(11,41,75,135,112,36,90,158)(12,48,64,138,113,23,99,141)(13,55,73,121,114,30,88,144)(14,42,62,124,115,37,97,147)(15,49,71,127,116,24,86,150)(16,56,80,130,117,31,95,153)(17,43,69,133,118,38,84,156)(18,50,78,136,119,25,93,159)(19,57,67,139,120,32,82,142)(20,44,76,122,101,39,91,145), (2,103)(4,105)(6,107)(8,109)(10,111)(12,113)(14,115)(16,117)(18,119)(20,101)(22,47)(24,49)(26,51)(28,53)(30,55)(32,57)(34,59)(36,41)(38,43)(40,45)(62,97)(64,99)(66,81)(68,83)(70,85)(72,87)(74,89)(76,91)(78,93)(80,95)(121,144)(123,146)(125,148)(127,150)(129,152)(131,154)(133,156)(135,158)(137,160)(139,142)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,51,65,125,102,26,100,148)(2,58,74,128,103,33,89,151)(3,45,63,131,104,40,98,154)(4,52,72,134,105,27,87,157)(5,59,61,137,106,34,96,160)(6,46,70,140,107,21,85,143)(7,53,79,123,108,28,94,146)(8,60,68,126,109,35,83,149)(9,47,77,129,110,22,92,152)(10,54,66,132,111,29,81,155)(11,41,75,135,112,36,90,158)(12,48,64,138,113,23,99,141)(13,55,73,121,114,30,88,144)(14,42,62,124,115,37,97,147)(15,49,71,127,116,24,86,150)(16,56,80,130,117,31,95,153)(17,43,69,133,118,38,84,156)(18,50,78,136,119,25,93,159)(19,57,67,139,120,32,82,142)(20,44,76,122,101,39,91,145), (2,103)(4,105)(6,107)(8,109)(10,111)(12,113)(14,115)(16,117)(18,119)(20,101)(22,47)(24,49)(26,51)(28,53)(30,55)(32,57)(34,59)(36,41)(38,43)(40,45)(62,97)(64,99)(66,81)(68,83)(70,85)(72,87)(74,89)(76,91)(78,93)(80,95)(121,144)(123,146)(125,148)(127,150)(129,152)(131,154)(133,156)(135,158)(137,160)(139,142) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,51,65,125,102,26,100,148),(2,58,74,128,103,33,89,151),(3,45,63,131,104,40,98,154),(4,52,72,134,105,27,87,157),(5,59,61,137,106,34,96,160),(6,46,70,140,107,21,85,143),(7,53,79,123,108,28,94,146),(8,60,68,126,109,35,83,149),(9,47,77,129,110,22,92,152),(10,54,66,132,111,29,81,155),(11,41,75,135,112,36,90,158),(12,48,64,138,113,23,99,141),(13,55,73,121,114,30,88,144),(14,42,62,124,115,37,97,147),(15,49,71,127,116,24,86,150),(16,56,80,130,117,31,95,153),(17,43,69,133,118,38,84,156),(18,50,78,136,119,25,93,159),(19,57,67,139,120,32,82,142),(20,44,76,122,101,39,91,145)], [(2,103),(4,105),(6,107),(8,109),(10,111),(12,113),(14,115),(16,117),(18,119),(20,101),(22,47),(24,49),(26,51),(28,53),(30,55),(32,57),(34,59),(36,41),(38,43),(40,45),(62,97),(64,99),(66,81),(68,83),(70,85),(72,87),(74,89),(76,91),(78,93),(80,95),(121,144),(123,146),(125,148),(127,150),(129,152),(131,154),(133,156),(135,158),(137,160),(139,142)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 20 | 20 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | - | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | C8○D4 | F5 | C2×F5 | C2×F5 | C4⋊F5 | D4.F5 |
kernel | C20⋊C8⋊C2 | C20⋊C8 | Dic5⋊C8 | C23.11D10 | C22×C5⋊C8 | C2×C22.F5 | C10.D4 | C23.D5 | C5×C22⋊C4 | C2×Dic5 | C2×Dic5 | C10 | C22⋊C4 | C2×C4 | C23 | C22 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 8 | 1 | 2 | 1 | 4 | 2 |
Matrix representation of C20⋊C8⋊C2 ►in GL6(𝔽41)
0 | 40 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 34 | 14 | 0 |
0 | 0 | 34 | 0 | 7 | 14 |
0 | 0 | 34 | 27 | 14 | 7 |
0 | 0 | 7 | 27 | 0 | 14 |
0 | 38 | 0 | 0 | 0 | 0 |
38 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 31 | 21 | 33 | 34 |
0 | 0 | 23 | 14 | 37 | 24 |
0 | 0 | 27 | 4 | 17 | 16 |
0 | 0 | 7 | 37 | 10 | 20 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,40,0,0,0,0,0,0,0,7,34,34,7,0,0,34,0,27,27,0,0,14,7,14,0,0,0,0,14,7,14],[0,38,0,0,0,0,38,0,0,0,0,0,0,0,31,23,27,7,0,0,21,14,4,37,0,0,33,37,17,10,0,0,34,24,16,20],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C20⋊C8⋊C2 in GAP, Magma, Sage, TeX
C_{20}\rtimes C_8\rtimes C_2
% in TeX
G:=Group("C20:C8:C2");
// GroupNames label
G:=SmallGroup(320,1034);
// by ID
G=gap.SmallGroup(320,1034);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,100,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^3,c*a*c=a*b^4,c*b*c=b^5>;
// generators/relations