direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C20⋊4D4, C42⋊39D10, C4⋊2(C2×D20), (C2×C4)⋊7D20, (C2×C20)⋊30D4, C20⋊10(C2×D4), (C2×C42)⋊9D5, C10⋊1(C4⋊1D4), (C4×C20)⋊50C22, (C22×D20)⋊4C2, C10.3(C22×D4), C2.5(C22×D20), (C2×D20)⋊42C22, (C2×C10).19C24, C22.64(C2×D20), (C2×C20).780C23, (C22×C4).438D10, (C22×D5).1C23, C22.62(C23×D5), (C23×D5).27C22, C23.315(C22×D5), (C22×C20).523C22, (C22×C10).381C23, (C2×C4×C20)⋊8C2, C5⋊1(C2×C4⋊1D4), (C2×C10).170(C2×D4), (C2×C4).729(C22×D5), SmallGroup(320,1147)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C20⋊4D4
G = < a,b,c,d | a2=b4=c20=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
Subgroups: 2430 in 498 conjugacy classes, 159 normal (9 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, D4, C23, C23, D5, C10, C42, C22×C4, C2×D4, C24, C20, D10, C2×C10, C2×C10, C2×C42, C4⋊1D4, C22×D4, D20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C4⋊1D4, C4×C20, C2×D20, C2×D20, C22×C20, C23×D5, C20⋊4D4, C2×C4×C20, C22×D20, C2×C20⋊4D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C4⋊1D4, C22×D4, D20, C22×D5, C2×C4⋊1D4, C2×D20, C23×D5, C20⋊4D4, C22×D20, C2×C20⋊4D4
(1 120)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 109)(11 110)(12 111)(13 112)(14 113)(15 114)(16 115)(17 116)(18 117)(19 118)(20 119)(21 68)(22 69)(23 70)(24 71)(25 72)(26 73)(27 74)(28 75)(29 76)(30 77)(31 78)(32 79)(33 80)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 130)(42 131)(43 132)(44 133)(45 134)(46 135)(47 136)(48 137)(49 138)(50 139)(51 140)(52 121)(53 122)(54 123)(55 124)(56 125)(57 126)(58 127)(59 128)(60 129)(81 153)(82 154)(83 155)(84 156)(85 157)(86 158)(87 159)(88 160)(89 141)(90 142)(91 143)(92 144)(93 145)(94 146)(95 147)(96 148)(97 149)(98 150)(99 151)(100 152)
(1 81 39 138)(2 82 40 139)(3 83 21 140)(4 84 22 121)(5 85 23 122)(6 86 24 123)(7 87 25 124)(8 88 26 125)(9 89 27 126)(10 90 28 127)(11 91 29 128)(12 92 30 129)(13 93 31 130)(14 94 32 131)(15 95 33 132)(16 96 34 133)(17 97 35 134)(18 98 36 135)(19 99 37 136)(20 100 38 137)(41 112 145 78)(42 113 146 79)(43 114 147 80)(44 115 148 61)(45 116 149 62)(46 117 150 63)(47 118 151 64)(48 119 152 65)(49 120 153 66)(50 101 154 67)(51 102 155 68)(52 103 156 69)(53 104 157 70)(54 105 158 71)(55 106 159 72)(56 107 160 73)(57 108 141 74)(58 109 142 75)(59 110 143 76)(60 111 144 77)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 58)(2 57)(3 56)(4 55)(5 54)(6 53)(7 52)(8 51)(9 50)(10 49)(11 48)(12 47)(13 46)(14 45)(15 44)(16 43)(17 42)(18 41)(19 60)(20 59)(21 160)(22 159)(23 158)(24 157)(25 156)(26 155)(27 154)(28 153)(29 152)(30 151)(31 150)(32 149)(33 148)(34 147)(35 146)(36 145)(37 144)(38 143)(39 142)(40 141)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(76 100)(77 99)(78 98)(79 97)(80 96)(101 126)(102 125)(103 124)(104 123)(105 122)(106 121)(107 140)(108 139)(109 138)(110 137)(111 136)(112 135)(113 134)(114 133)(115 132)(116 131)(117 130)(118 129)(119 128)(120 127)
G:=sub<Sym(160)| (1,120)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,68)(22,69)(23,70)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,80)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,140)(52,121)(53,122)(54,123)(55,124)(56,125)(57,126)(58,127)(59,128)(60,129)(81,153)(82,154)(83,155)(84,156)(85,157)(86,158)(87,159)(88,160)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152), (1,81,39,138)(2,82,40,139)(3,83,21,140)(4,84,22,121)(5,85,23,122)(6,86,24,123)(7,87,25,124)(8,88,26,125)(9,89,27,126)(10,90,28,127)(11,91,29,128)(12,92,30,129)(13,93,31,130)(14,94,32,131)(15,95,33,132)(16,96,34,133)(17,97,35,134)(18,98,36,135)(19,99,37,136)(20,100,38,137)(41,112,145,78)(42,113,146,79)(43,114,147,80)(44,115,148,61)(45,116,149,62)(46,117,150,63)(47,118,151,64)(48,119,152,65)(49,120,153,66)(50,101,154,67)(51,102,155,68)(52,103,156,69)(53,104,157,70)(54,105,158,71)(55,106,159,72)(56,107,160,73)(57,108,141,74)(58,109,142,75)(59,110,143,76)(60,111,144,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,58)(2,57)(3,56)(4,55)(5,54)(6,53)(7,52)(8,51)(9,50)(10,49)(11,48)(12,47)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,60)(20,59)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,100)(77,99)(78,98)(79,97)(80,96)(101,126)(102,125)(103,124)(104,123)(105,122)(106,121)(107,140)(108,139)(109,138)(110,137)(111,136)(112,135)(113,134)(114,133)(115,132)(116,131)(117,130)(118,129)(119,128)(120,127)>;
G:=Group( (1,120)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,68)(22,69)(23,70)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,80)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,140)(52,121)(53,122)(54,123)(55,124)(56,125)(57,126)(58,127)(59,128)(60,129)(81,153)(82,154)(83,155)(84,156)(85,157)(86,158)(87,159)(88,160)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152), (1,81,39,138)(2,82,40,139)(3,83,21,140)(4,84,22,121)(5,85,23,122)(6,86,24,123)(7,87,25,124)(8,88,26,125)(9,89,27,126)(10,90,28,127)(11,91,29,128)(12,92,30,129)(13,93,31,130)(14,94,32,131)(15,95,33,132)(16,96,34,133)(17,97,35,134)(18,98,36,135)(19,99,37,136)(20,100,38,137)(41,112,145,78)(42,113,146,79)(43,114,147,80)(44,115,148,61)(45,116,149,62)(46,117,150,63)(47,118,151,64)(48,119,152,65)(49,120,153,66)(50,101,154,67)(51,102,155,68)(52,103,156,69)(53,104,157,70)(54,105,158,71)(55,106,159,72)(56,107,160,73)(57,108,141,74)(58,109,142,75)(59,110,143,76)(60,111,144,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,58)(2,57)(3,56)(4,55)(5,54)(6,53)(7,52)(8,51)(9,50)(10,49)(11,48)(12,47)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,60)(20,59)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,100)(77,99)(78,98)(79,97)(80,96)(101,126)(102,125)(103,124)(104,123)(105,122)(106,121)(107,140)(108,139)(109,138)(110,137)(111,136)(112,135)(113,134)(114,133)(115,132)(116,131)(117,130)(118,129)(119,128)(120,127) );
G=PermutationGroup([[(1,120),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,109),(11,110),(12,111),(13,112),(14,113),(15,114),(16,115),(17,116),(18,117),(19,118),(20,119),(21,68),(22,69),(23,70),(24,71),(25,72),(26,73),(27,74),(28,75),(29,76),(30,77),(31,78),(32,79),(33,80),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,130),(42,131),(43,132),(44,133),(45,134),(46,135),(47,136),(48,137),(49,138),(50,139),(51,140),(52,121),(53,122),(54,123),(55,124),(56,125),(57,126),(58,127),(59,128),(60,129),(81,153),(82,154),(83,155),(84,156),(85,157),(86,158),(87,159),(88,160),(89,141),(90,142),(91,143),(92,144),(93,145),(94,146),(95,147),(96,148),(97,149),(98,150),(99,151),(100,152)], [(1,81,39,138),(2,82,40,139),(3,83,21,140),(4,84,22,121),(5,85,23,122),(6,86,24,123),(7,87,25,124),(8,88,26,125),(9,89,27,126),(10,90,28,127),(11,91,29,128),(12,92,30,129),(13,93,31,130),(14,94,32,131),(15,95,33,132),(16,96,34,133),(17,97,35,134),(18,98,36,135),(19,99,37,136),(20,100,38,137),(41,112,145,78),(42,113,146,79),(43,114,147,80),(44,115,148,61),(45,116,149,62),(46,117,150,63),(47,118,151,64),(48,119,152,65),(49,120,153,66),(50,101,154,67),(51,102,155,68),(52,103,156,69),(53,104,157,70),(54,105,158,71),(55,106,159,72),(56,107,160,73),(57,108,141,74),(58,109,142,75),(59,110,143,76),(60,111,144,77)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,58),(2,57),(3,56),(4,55),(5,54),(6,53),(7,52),(8,51),(9,50),(10,49),(11,48),(12,47),(13,46),(14,45),(15,44),(16,43),(17,42),(18,41),(19,60),(20,59),(21,160),(22,159),(23,158),(24,157),(25,156),(26,155),(27,154),(28,153),(29,152),(30,151),(31,150),(32,149),(33,148),(34,147),(35,146),(36,145),(37,144),(38,143),(39,142),(40,141),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(76,100),(77,99),(78,98),(79,97),(80,96),(101,126),(102,125),(103,124),(104,123),(105,122),(106,121),(107,140),(108,139),(109,138),(110,137),(111,136),(112,135),(113,134),(114,133),(115,132),(116,131),(117,130),(118,129),(119,128),(120,127)]])
92 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4L | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 20 | ··· | 20 | 2 | ··· | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D20 |
kernel | C2×C20⋊4D4 | C20⋊4D4 | C2×C4×C20 | C22×D20 | C2×C20 | C2×C42 | C42 | C22×C4 | C2×C4 |
# reps | 1 | 8 | 1 | 6 | 12 | 2 | 8 | 6 | 48 |
Matrix representation of C2×C20⋊4D4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
2 | 32 | 0 | 0 | 0 | 0 |
37 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 28 | 0 | 0 |
0 | 0 | 13 | 39 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 1 | 0 | 0 | 0 | 0 |
5 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 30 |
0 | 0 | 0 | 0 | 27 | 39 |
28 | 14 | 0 | 0 | 0 | 0 |
29 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 39 | 0 | 0 |
0 | 0 | 25 | 25 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 27 |
0 | 0 | 0 | 0 | 12 | 13 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[2,37,0,0,0,0,32,39,0,0,0,0,0,0,2,13,0,0,0,0,28,39,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,5,0,0,0,0,1,6,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,25,27,0,0,0,0,30,39],[28,29,0,0,0,0,14,13,0,0,0,0,0,0,16,25,0,0,0,0,39,25,0,0,0,0,0,0,28,12,0,0,0,0,27,13] >;
C2×C20⋊4D4 in GAP, Magma, Sage, TeX
C_2\times C_{20}\rtimes_4D_4
% in TeX
G:=Group("C2xC20:4D4");
// GroupNames label
G:=SmallGroup(320,1147);
// by ID
G=gap.SmallGroup(320,1147);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,675,80,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations