Copied to
clipboard

G = C2×D10.3Q8order 320 = 26·5

Direct product of C2 and D10.3Q8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D10.3Q8, D10.14C42, (C22×C4)⋊5F5, (C22×F5)⋊3C4, (C22×C20)⋊10C4, D10.90(C2×D4), D10.16(C2×Q8), D10.33(C4⋊C4), (C23×F5).3C2, C23.62(C2×F5), C22.22(C4×F5), C10⋊(C2.C42), C10.19(C2×C42), (C2×C10).22C42, D5⋊(C2.C42), C22.28(C4⋊F5), (C22×D5).21Q8, (C22×Dic5)⋊16C4, D10.36(C22×C4), (C22×D5).143D4, D10.33(C22⋊C4), C22.49(C22×F5), C22.47(C22⋊F5), (C22×F5).16C22, (C22×D5).274C23, (C23×D5).132C22, (C2×C4×D5)⋊16C4, C2.5(C2×C4⋊F5), C2.19(C2×C4×F5), (C2×F5)⋊3(C2×C4), D5.2(C2×C4⋊C4), (C2×C4)⋊10(C2×F5), C5⋊(C2×C2.C42), (C2×C20)⋊11(C2×C4), C10.22(C2×C4⋊C4), C2.3(C2×C22⋊F5), C10.9(C2×C22⋊C4), D5.2(C2×C22⋊C4), (C2×C10).28(C4⋊C4), (D5×C22×C4).23C2, (C2×Dic5)⋊34(C2×C4), (C2×C4×D5).365C22, (C22×C10).69(C2×C4), (C2×C10).69(C22×C4), (C22×D5).89(C2×C4), (C2×C10).51(C22⋊C4), SmallGroup(320,1100)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D10.3Q8
C1C5D5D10C22×D5C22×F5C23×F5 — C2×D10.3Q8
C5C10 — C2×D10.3Q8
C1C23C22×C4

Generators and relations for C2×D10.3Q8
 G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=b4cd2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=b3, cd=dc, ece-1=b2c, ede-1=b5d-1 >

Subgroups: 1242 in 330 conjugacy classes, 124 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C22×C4, C22×C4, C24, Dic5, C20, F5, D10, D10, C2×C10, C2×C10, C2.C42, C23×C4, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×F5, C2×F5, C22×D5, C22×D5, C22×C10, C2×C2.C42, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×C20, C22×F5, C22×F5, C23×D5, D10.3Q8, D5×C22×C4, C23×F5, C2×D10.3Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, F5, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×F5, C2×C2.C42, C4×F5, C4⋊F5, C22⋊F5, C22×F5, D10.3Q8, C2×C4×F5, C2×C4⋊F5, C2×C22⋊F5, C2×D10.3Q8

Smallest permutation representation of C2×D10.3Q8
On 80 points
Generators in S80
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 51)(11 37)(12 38)(13 39)(14 40)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 61)(28 62)(29 63)(30 64)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 71)(50 72)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 30)(7 29)(8 28)(9 27)(10 26)(11 76)(12 75)(13 74)(14 73)(15 72)(16 71)(17 80)(18 79)(19 78)(20 77)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)
(1 77 21 16)(2 78 22 17)(3 79 23 18)(4 80 24 19)(5 71 25 20)(6 72 26 11)(7 73 27 12)(8 74 28 13)(9 75 29 14)(10 76 30 15)(31 51 44 64)(32 52 45 65)(33 53 46 66)(34 54 47 67)(35 55 48 68)(36 56 49 69)(37 57 50 70)(38 58 41 61)(39 59 42 62)(40 60 43 63)
(2 8 10 4)(3 5 9 7)(11 77)(12 74 20 80)(13 71 19 73)(14 78 18 76)(15 75 17 79)(16 72)(22 28 30 24)(23 25 29 27)(31 43 33 47)(32 50)(34 44 40 46)(35 41 39 49)(36 48 38 42)(37 45)(51 55 53 59)(54 56 60 58)(61 67 69 63)(62 64 68 66)

G:=sub<Sym(80)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,61)(28,62)(29,63)(30,64)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,71)(50,72), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,76)(12,75)(13,74)(14,73)(15,72)(16,71)(17,80)(18,79)(19,78)(20,77)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61), (1,77,21,16)(2,78,22,17)(3,79,23,18)(4,80,24,19)(5,71,25,20)(6,72,26,11)(7,73,27,12)(8,74,28,13)(9,75,29,14)(10,76,30,15)(31,51,44,64)(32,52,45,65)(33,53,46,66)(34,54,47,67)(35,55,48,68)(36,56,49,69)(37,57,50,70)(38,58,41,61)(39,59,42,62)(40,60,43,63), (2,8,10,4)(3,5,9,7)(11,77)(12,74,20,80)(13,71,19,73)(14,78,18,76)(15,75,17,79)(16,72)(22,28,30,24)(23,25,29,27)(31,43,33,47)(32,50)(34,44,40,46)(35,41,39,49)(36,48,38,42)(37,45)(51,55,53,59)(54,56,60,58)(61,67,69,63)(62,64,68,66)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,37)(12,38)(13,39)(14,40)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,61)(28,62)(29,63)(30,64)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,71)(50,72), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,76)(12,75)(13,74)(14,73)(15,72)(16,71)(17,80)(18,79)(19,78)(20,77)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61), (1,77,21,16)(2,78,22,17)(3,79,23,18)(4,80,24,19)(5,71,25,20)(6,72,26,11)(7,73,27,12)(8,74,28,13)(9,75,29,14)(10,76,30,15)(31,51,44,64)(32,52,45,65)(33,53,46,66)(34,54,47,67)(35,55,48,68)(36,56,49,69)(37,57,50,70)(38,58,41,61)(39,59,42,62)(40,60,43,63), (2,8,10,4)(3,5,9,7)(11,77)(12,74,20,80)(13,71,19,73)(14,78,18,76)(15,75,17,79)(16,72)(22,28,30,24)(23,25,29,27)(31,43,33,47)(32,50)(34,44,40,46)(35,41,39,49)(36,48,38,42)(37,45)(51,55,53,59)(54,56,60,58)(61,67,69,63)(62,64,68,66) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,51),(11,37),(12,38),(13,39),(14,40),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,61),(28,62),(29,63),(30,64),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,71),(50,72)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,30),(7,29),(8,28),(9,27),(10,26),(11,76),(12,75),(13,74),(14,73),(15,72),(16,71),(17,80),(18,79),(19,78),(20,77),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61)], [(1,77,21,16),(2,78,22,17),(3,79,23,18),(4,80,24,19),(5,71,25,20),(6,72,26,11),(7,73,27,12),(8,74,28,13),(9,75,29,14),(10,76,30,15),(31,51,44,64),(32,52,45,65),(33,53,46,66),(34,54,47,67),(35,55,48,68),(36,56,49,69),(37,57,50,70),(38,58,41,61),(39,59,42,62),(40,60,43,63)], [(2,8,10,4),(3,5,9,7),(11,77),(12,74,20,80),(13,71,19,73),(14,78,18,76),(15,75,17,79),(16,72),(22,28,30,24),(23,25,29,27),(31,43,33,47),(32,50),(34,44,40,46),(35,41,39,49),(36,48,38,42),(37,45),(51,55,53,59),(54,56,60,58),(61,67,69,63),(62,64,68,66)]])

56 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D4E···4X 5 10A···10G20A···20H
order12···22···244444···4510···1020···20
size11···15···5222210···1044···44···4

56 irreducible representations

dim1111111122444444
type+++++-++++
imageC1C2C2C2C4C4C4C4D4Q8F5C2×F5C2×F5C4×F5C4⋊F5C22⋊F5
kernelC2×D10.3Q8D10.3Q8D5×C22×C4C23×F5C2×C4×D5C22×Dic5C22×C20C22×F5C22×D5C22×D5C22×C4C2×C4C23C22C22C22
# reps14124221662121444

Matrix representation of C2×D10.3Q8 in GL8(𝔽41)

400000000
040000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
004000000
000400000
000000400
000000040
00001111
000040000
,
400000000
040000000
004000000
000400000
000040000
00001111
000000040
000000400
,
01000000
400000000
00920000
001320000
00009000
00000900
00000090
00000009
,
10000000
040000000
00900000
001320000
00000010
00001000
00000001
00000100

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,40,0,0,0,0,0,0,1,0,0,0,0,0,40,0,1,0,0,0,0,0,0,40,1,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,40,0,0,0,0,0,1,40,0],[0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,9,1,0,0,0,0,0,0,2,32,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,9,1,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

C2×D10.3Q8 in GAP, Magma, Sage, TeX

C_2\times D_{10}._3Q_8
% in TeX

G:=Group("C2xD10.3Q8");
// GroupNames label

G:=SmallGroup(320,1100);
// by ID

G=gap.SmallGroup(320,1100);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,100,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=b^4*c*d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=b^3,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=b^5*d^-1>;
// generators/relations

׿
×
𝔽