Extensions 1→N→G→Q→1 with N=C2xDic5 and Q=C2xC4

Direct product G=NxQ with N=C2xDic5 and Q=C2xC4
dρLabelID
C22xC4xDic5320C2^2xC4xDic5320,1454

Semidirect products G=N:Q with N=C2xDic5 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xDic5):1(C2xC4) = D5xC23:C4φ: C2xC4/C2C4 ⊆ Out C2xDic5408+(C2xDic5):1(C2xC4)320,370
(C2xDic5):2(C2xC4) = C2xC23.1D10φ: C2xC4/C2C4 ⊆ Out C2xDic580(C2xDic5):2(C2xC4)320,581
(C2xDic5):3(C2xC4) = (C2xD4):7F5φ: C2xC4/C2C4 ⊆ Out C2xDic5408+(C2xDic5):3(C2xC4)320,1108
(C2xDic5):4(C2xC4) = C2xC23:F5φ: C2xC4/C2C4 ⊆ Out C2xDic580(C2xDic5):4(C2xC4)320,1134
(C2xDic5):5(C2xC4) = D10:3(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):5(C2xC4)320,295
(C2xDic5):6(C2xC4) = C24.46D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):6(C2xC4)320,573
(C2xDic5):7(C2xC4) = C24.12D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):7(C2xC4)320,583
(C2xDic5):8(C2xC4) = C23.45D20φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):8(C2xC4)320,585
(C2xDic5):9(C2xC4) = D10:5(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):9(C2xC4)320,616
(C2xDic5):10(C2xC4) = C24.62D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):10(C2xC4)320,837
(C2xDic5):11(C2xC4) = C24.65D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):11(C2xC4)320,840
(C2xDic5):12(C2xC4) = C24.24D10φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5):12(C2xC4)320,1158
(C2xDic5):13(C2xC4) = C42.108D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5):13(C2xC4)320,1218
(C2xDic5):14(C2xC4) = C22:C4xF5φ: C2xC4/C2C22 ⊆ Out C2xDic540(C2xDic5):14(C2xC4)320,1036
(C2xDic5):15(C2xC4) = D10:(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic540(C2xDic5):15(C2xC4)320,1037
(C2xDic5):16(C2xC4) = (C2xF5):D4φ: C2xC4/C2C22 ⊆ Out C2xDic540(C2xDic5):16(C2xC4)320,1117
(C2xDic5):17(C2xC4) = C2xD4xF5φ: C2xC4/C2C22 ⊆ Out C2xDic540(C2xDic5):17(C2xC4)320,1595
(C2xDic5):18(C2xC4) = D10.C24φ: C2xC4/C2C22 ⊆ Out C2xDic5408+(C2xDic5):18(C2xC4)320,1596
(C2xDic5):19(C2xC4) = C4oD4xF5φ: C2xC4/C2C22 ⊆ Out C2xDic5408(C2xDic5):19(C2xC4)320,1603
(C2xDic5):20(C2xC4) = D5.2+ 1+4φ: C2xC4/C2C22 ⊆ Out C2xDic5408(C2xDic5):20(C2xC4)320,1604
(C2xDic5):21(C2xC4) = D10:2C42φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5):21(C2xC4)320,293
(C2xDic5):22(C2xC4) = C4xD10:C4φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5):22(C2xC4)320,565
(C2xDic5):23(C2xC4) = C22:C4xDic5φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5):23(C2xC4)320,568
(C2xDic5):24(C2xC4) = C4xC23.D5φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5):24(C2xC4)320,836
(C2xDic5):25(C2xC4) = C2xDic5:4D4φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5):25(C2xC4)320,1157
(C2xDic5):26(C2xC4) = C4xD4:2D5φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5):26(C2xC4)320,1208
(C2xDic5):27(C2xC4) = C2xC4xC5:D4φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5):27(C2xC4)320,1460
(C2xDic5):28(C2xC4) = D5xC2.C42φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5):28(C2xC4)320,290
(C2xDic5):29(C2xC4) = C2xC10.10C42φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5):29(C2xC4)320,835
(C2xDic5):30(C2xC4) = C2xC23.11D10φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5):30(C2xC4)320,1152
(C2xDic5):31(C2xC4) = C2xD5xC4:C4φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5):31(C2xC4)320,1173
(C2xDic5):32(C2xC4) = D5xC42:C2φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5):32(C2xC4)320,1192
(C2xDic5):33(C2xC4) = C22xC10.D4φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5):33(C2xC4)320,1455
(C2xDic5):34(C2xC4) = C2xD10.3Q8φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5):34(C2xC4)320,1100
(C2xDic5):35(C2xC4) = C22xC4xF5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5):35(C2xC4)320,1590
(C2xDic5):36(C2xC4) = C22xC4:F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5):36(C2xC4)320,1591
(C2xDic5):37(C2xC4) = C2xD10.C23φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5):37(C2xC4)320,1592
(C2xDic5):38(C2xC4) = D5xC2xC42φ: trivial image160(C2xDic5):38(C2xC4)320,1143

Non-split extensions G=N.Q with N=C2xDic5 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xDic5).1(C2xC4) = C23:C4:5D5φ: C2xC4/C2C4 ⊆ Out C2xDic5808-(C2xDic5).1(C2xC4)320,367
(C2xDic5).2(C2xC4) = M4(2).19D10φ: C2xC4/C2C4 ⊆ Out C2xDic5808-(C2xDic5).2(C2xC4)320,372
(C2xDic5).3(C2xC4) = D5xC4.10D4φ: C2xC4/C2C4 ⊆ Out C2xDic5808-(C2xDic5).3(C2xC4)320,377
(C2xDic5).4(C2xC4) = (C2xD20):25C4φ: C2xC4/C2C4 ⊆ Out C2xDic5804(C2xDic5).4(C2xC4)320,633
(C2xDic5).5(C2xC4) = M4(2).31D10φ: C2xC4/C2C4 ⊆ Out C2xDic5804(C2xDic5).5(C2xC4)320,759
(C2xDic5).6(C2xC4) = C2xC4.12D20φ: C2xC4/C2C4 ⊆ Out C2xDic5160(C2xDic5).6(C2xC4)320,763
(C2xDic5).7(C2xC4) = (C4xD5).D4φ: C2xC4/C2C4 ⊆ Out C2xDic5804(C2xDic5).7(C2xC4)320,1099
(C2xDic5).8(C2xC4) = (C2xQ8).7F5φ: C2xC4/C2C4 ⊆ Out C2xDic5808-(C2xDic5).8(C2xC4)320,1127
(C2xDic5).9(C2xC4) = C10.51(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).9(C2xC4)320,279
(C2xDic5).10(C2xC4) = C10.52(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).10(C2xC4)320,282
(C2xDic5).11(C2xC4) = C10.54(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).11(C2xC4)320,296
(C2xDic5).12(C2xC4) = C40:11Q8φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).12(C2xC4)320,306
(C2xDic5).13(C2xC4) = C8:6D20φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).13(C2xC4)320,315
(C2xDic5).14(C2xC4) = C42.243D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).14(C2xC4)320,317
(C2xDic5).15(C2xC4) = C40:Q8φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).15(C2xC4)320,328
(C2xDic5).16(C2xC4) = C8:9D20φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).16(C2xC4)320,333
(C2xDic5).17(C2xC4) = C42.185D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).17(C2xC4)320,336
(C2xDic5).18(C2xC4) = C40:8C4:C2φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).18(C2xC4)320,347
(C2xDic5).19(C2xC4) = D10:4M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).19(C2xC4)320,355
(C2xDic5).20(C2xC4) = C5:2C8:26D4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).20(C2xC4)320,357
(C2xDic5).21(C2xC4) = D5xC4.D4φ: C2xC4/C2C22 ⊆ Out C2xDic5408+(C2xDic5).21(C2xC4)320,371
(C2xDic5).22(C2xC4) = Dic5.5M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).22(C2xC4)320,455
(C2xDic5).23(C2xC4) = C42.198D10φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).23(C2xC4)320,458
(C2xDic5).24(C2xC4) = D10:5M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).24(C2xC4)320,463
(C2xDic5).25(C2xC4) = C20:6M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).25(C2xC4)320,465
(C2xDic5).26(C2xC4) = C20:7(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).26(C2xC4)320,555
(C2xDic5).27(C2xC4) = (C2xC20):10Q8φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).27(C2xC4)320,556
(C2xDic5).28(C2xC4) = C10.92(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).28(C2xC4)320,560
(C2xDic5).29(C2xC4) = (C2xC42):D5φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).29(C2xC4)320,567
(C2xDic5).30(C2xC4) = C20:4(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).30(C2xC4)320,600
(C2xDic5).31(C2xC4) = (C2xDic5):6Q8φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).31(C2xC4)320,601
(C2xDic5).32(C2xC4) = C20.65(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).32(C2xC4)320,729
(C2xDic5).33(C2xC4) = (C22xC8):D5φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).33(C2xC4)320,737
(C2xDic5).34(C2xC4) = C40:32D4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).34(C2xC4)320,738
(C2xDic5).35(C2xC4) = C20.51(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).35(C2xC4)320,746
(C2xDic5).36(C2xC4) = C40:D4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).36(C2xC4)320,754
(C2xDic5).37(C2xC4) = C4.89(C2xD20)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).37(C2xC4)320,756
(C2xDic5).38(C2xC4) = C42.87D10φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).38(C2xC4)320,1188
(C2xDic5).39(C2xC4) = C40.47C23φ: C2xC4/C2C22 ⊆ Out C2xDic5804(C2xDic5).39(C2xC4)320,1417
(C2xDic5).40(C2xC4) = C20.72C24φ: C2xC4/C2C22 ⊆ Out C2xDic5804(C2xDic5).40(C2xC4)320,1422
(C2xDic5).41(C2xC4) = C22:C4.F5φ: C2xC4/C2C22 ⊆ Out C2xDic5808-(C2xDic5).41(C2xC4)320,205
(C2xDic5).42(C2xC4) = (C2xC8):F5φ: C2xC4/C2C22 ⊆ Out C2xDic5804(C2xDic5).42(C2xC4)320,232
(C2xDic5).43(C2xC4) = M4(2):F5φ: C2xC4/C2C22 ⊆ Out C2xDic5408(C2xDic5).43(C2xC4)320,237
(C2xDic5).44(C2xC4) = M4(2):4F5φ: C2xC4/C2C22 ⊆ Out C2xDic5808(C2xDic5).44(C2xC4)320,240
(C2xDic5).45(C2xC4) = C22.F5:C4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).45(C2xC4)320,257
(C2xDic5).46(C2xC4) = Dic5.C42φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).46(C2xC4)320,1029
(C2xDic5).47(C2xC4) = C5:C8:8D4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).47(C2xC4)320,1030
(C2xDic5).48(C2xC4) = C5:C8:D4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).48(C2xC4)320,1031
(C2xDic5).49(C2xC4) = D10:M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).49(C2xC4)320,1032
(C2xDic5).50(C2xC4) = Dic5:M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).50(C2xC4)320,1033
(C2xDic5).51(C2xC4) = C20:C8:C2φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).51(C2xC4)320,1034
(C2xDic5).52(C2xC4) = C23.(C2xF5)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).52(C2xC4)320,1035
(C2xDic5).53(C2xC4) = C10.(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).53(C2xC4)320,1038
(C2xDic5).54(C2xC4) = D10.C42φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).54(C2xC4)320,1039
(C2xDic5).55(C2xC4) = D20:2C8φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).55(C2xC4)320,1040
(C2xDic5).56(C2xC4) = Dic10:C8φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).56(C2xC4)320,1041
(C2xDic5).57(C2xC4) = D10:2M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).57(C2xC4)320,1042
(C2xDic5).58(C2xC4) = C20:M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).58(C2xC4)320,1043
(C2xDic5).59(C2xC4) = C4:C4.7F5φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).59(C2xC4)320,1044
(C2xDic5).60(C2xC4) = Dic5.M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).60(C2xC4)320,1045
(C2xDic5).61(C2xC4) = C4:C4.9F5φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).61(C2xC4)320,1046
(C2xDic5).62(C2xC4) = C20.M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).62(C2xC4)320,1047
(C2xDic5).63(C2xC4) = C4:C4xF5φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).63(C2xC4)320,1048
(C2xDic5).64(C2xC4) = C4:C4:5F5φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).64(C2xC4)320,1049
(C2xDic5).65(C2xC4) = C20:(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).65(C2xC4)320,1050
(C2xDic5).66(C2xC4) = M4(2)xF5φ: C2xC4/C2C22 ⊆ Out C2xDic5408(C2xDic5).66(C2xC4)320,1064
(C2xDic5).67(C2xC4) = M4(2):5F5φ: C2xC4/C2C22 ⊆ Out C2xDic5808(C2xDic5).67(C2xC4)320,1066
(C2xDic5).68(C2xC4) = C23:F5:5C2φ: C2xC4/C2C22 ⊆ Out C2xDic5804(C2xDic5).68(C2xC4)320,1083
(C2xDic5).69(C2xC4) = C2xDic5.D4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).69(C2xC4)320,1098
(C2xDic5).70(C2xC4) = D4xC5:C8φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).70(C2xC4)320,1110
(C2xDic5).71(C2xC4) = C5:C8:7D4φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).71(C2xC4)320,1111
(C2xDic5).72(C2xC4) = C20:2M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).72(C2xC4)320,1112
(C2xDic5).73(C2xC4) = (C2xD4).7F5φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).73(C2xC4)320,1113
(C2xDic5).74(C2xC4) = (C2xD4).8F5φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).74(C2xC4)320,1114
(C2xDic5).75(C2xC4) = C2.(D4xF5)φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).75(C2xC4)320,1118
(C2xDic5).76(C2xC4) = Q8xC5:C8φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).76(C2xC4)320,1124
(C2xDic5).77(C2xC4) = C20.6M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic5320(C2xDic5).77(C2xC4)320,1126
(C2xDic5).78(C2xC4) = (C2xF5):Q8φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).78(C2xC4)320,1128
(C2xDic5).79(C2xC4) = C2xC23.F5φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).79(C2xC4)320,1137
(C2xDic5).80(C2xC4) = C2xD4.F5φ: C2xC4/C2C22 ⊆ Out C2xDic5160(C2xDic5).80(C2xC4)320,1593
(C2xDic5).81(C2xC4) = Dic5.C24φ: C2xC4/C2C22 ⊆ Out C2xDic5808-(C2xDic5).81(C2xC4)320,1594
(C2xDic5).82(C2xC4) = C2xQ8xF5φ: C2xC4/C2C22 ⊆ Out C2xDic580(C2xDic5).82(C2xC4)320,1599
(C2xDic5).83(C2xC4) = D5.2- 1+4φ: C2xC4/C2C22 ⊆ Out C2xDic5808-(C2xDic5).83(C2xC4)320,1600
(C2xDic5).84(C2xC4) = (C2xC20):Q8φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).84(C2xC4)320,273
(C2xDic5).85(C2xC4) = C10.49(C4xD4)φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).85(C2xC4)320,274
(C2xDic5).86(C2xC4) = Dic5:2C42φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).86(C2xC4)320,276
(C2xDic5).87(C2xC4) = C2.(C4xD20)φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).87(C2xC4)320,280
(C2xDic5).88(C2xC4) = C4:Dic5:15C4φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).88(C2xC4)320,281
(C2xDic5).89(C2xC4) = C10.55(C4xD4)φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).89(C2xC4)320,297
(C2xDic5).90(C2xC4) = C8xDic10φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).90(C2xC4)320,305
(C2xDic5).91(C2xC4) = C8xD20φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).91(C2xC4)320,313
(C2xDic5).92(C2xC4) = D10.5C42φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).92(C2xC4)320,316
(C2xDic5).93(C2xC4) = D10.7C42φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).93(C2xC4)320,335
(C2xDic5).94(C2xC4) = C5:5(C8xD4)φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).94(C2xC4)320,352
(C2xDic5).95(C2xC4) = C22:C8:D5φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).95(C2xC4)320,354
(C2xDic5).96(C2xC4) = Dic5:2M4(2)φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).96(C2xC4)320,356
(C2xDic5).97(C2xC4) = Dic10:5C8φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).97(C2xC4)320,457
(C2xDic5).98(C2xC4) = D20:5C8φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).98(C2xC4)320,461
(C2xDic5).99(C2xC4) = C42.30D10φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).99(C2xC4)320,466
(C2xDic5).100(C2xC4) = C42.31D10φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).100(C2xC4)320,467
(C2xDic5).101(C2xC4) = C4xC10.D4φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).101(C2xC4)320,558
(C2xDic5).102(C2xC4) = C4xC4:Dic5φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).102(C2xC4)320,561
(C2xDic5).103(C2xC4) = C24.3D10φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).103(C2xC4)320,571
(C2xDic5).104(C2xC4) = C24.4D10φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).104(C2xC4)320,572
(C2xDic5).105(C2xC4) = C24.13D10φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).105(C2xC4)320,584
(C2xDic5).106(C2xC4) = C10.96(C4xD4)φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).106(C2xC4)320,599
(C2xDic5).107(C2xC4) = C4:C4xDic5φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).107(C2xC4)320,602
(C2xDic5).108(C2xC4) = C10.97(C4xD4)φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).108(C2xC4)320,605
(C2xDic5).109(C2xC4) = C10.90(C4xD4)φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).109(C2xC4)320,617
(C2xDic5).110(C2xC4) = C20.42C42φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).110(C2xC4)320,728
(C2xDic5).111(C2xC4) = C8xC5:D4φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).111(C2xC4)320,736
(C2xDic5).112(C2xC4) = C20.37C42φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).112(C2xC4)320,749
(C2xDic5).113(C2xC4) = C40:18D4φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).113(C2xC4)320,755
(C2xDic5).114(C2xC4) = C2xC4xDic10φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).114(C2xC4)320,1139
(C2xDic5).115(C2xC4) = C2xDic5:3Q8φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).115(C2xC4)320,1168
(C2xDic5).116(C2xC4) = C2xD20.3C4φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).116(C2xC4)320,1410
(C2xDic5).117(C2xC4) = C2xD20.2C4φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).117(C2xC4)320,1416
(C2xDic5).118(C2xC4) = D5xC8oD4φ: C2xC4/C4C2 ⊆ Out C2xDic5804(C2xDic5).118(C2xC4)320,1421
(C2xDic5).119(C2xC4) = C8xC5:C8φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).119(C2xC4)320,216
(C2xDic5).120(C2xC4) = C40:C8φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).120(C2xC4)320,217
(C2xDic5).121(C2xC4) = C20.31M4(2)φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).121(C2xC4)320,218
(C2xDic5).122(C2xC4) = D10.3M4(2)φ: C2xC4/C4C2 ⊆ Out C2xDic580(C2xDic5).122(C2xC4)320,230
(C2xDic5).123(C2xC4) = C10.(C4:C8)φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).123(C2xC4)320,256
(C2xDic5).124(C2xC4) = C2xC8xF5φ: C2xC4/C4C2 ⊆ Out C2xDic580(C2xDic5).124(C2xC4)320,1054
(C2xDic5).125(C2xC4) = C2xC8:F5φ: C2xC4/C4C2 ⊆ Out C2xDic580(C2xDic5).125(C2xC4)320,1055
(C2xDic5).126(C2xC4) = C20.12C42φ: C2xC4/C4C2 ⊆ Out C2xDic5804(C2xDic5).126(C2xC4)320,1056
(C2xDic5).127(C2xC4) = C2xC10.C42φ: C2xC4/C4C2 ⊆ Out C2xDic5320(C2xDic5).127(C2xC4)320,1087
(C2xDic5).128(C2xC4) = C4xC22.F5φ: C2xC4/C4C2 ⊆ Out C2xDic5160(C2xDic5).128(C2xC4)320,1088
(C2xDic5).129(C2xC4) = Dic5.15C42φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).129(C2xC4)320,275
(C2xDic5).130(C2xC4) = C5:2(C42:8C4)φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).130(C2xC4)320,277
(C2xDic5).131(C2xC4) = C5:2(C42:5C4)φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).131(C2xC4)320,278
(C2xDic5).132(C2xC4) = C22.58(D4xD5)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).132(C2xC4)320,291
(C2xDic5).133(C2xC4) = D10:2(C4:C4)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).133(C2xC4)320,294
(C2xDic5).134(C2xC4) = C42.282D10φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).134(C2xC4)320,312
(C2xDic5).135(C2xC4) = C4xC8:D5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).135(C2xC4)320,314
(C2xDic5).136(C2xC4) = C42.182D10φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).136(C2xC4)320,332
(C2xDic5).137(C2xC4) = D10.6C42φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).137(C2xC4)320,334
(C2xDic5).138(C2xC4) = Dic5.9M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).138(C2xC4)320,346
(C2xDic5).139(C2xC4) = D5xC22:C8φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).139(C2xC4)320,351
(C2xDic5).140(C2xC4) = D10:7M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).140(C2xC4)320,353
(C2xDic5).141(C2xC4) = M4(2).21D10φ: C2xC4/C22C2 ⊆ Out C2xDic5808+(C2xDic5).141(C2xC4)320,378
(C2xDic5).142(C2xC4) = D5xC4:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).142(C2xC4)320,459
(C2xDic5).143(C2xC4) = C42.200D10φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).143(C2xC4)320,460
(C2xDic5).144(C2xC4) = C42.202D10φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).144(C2xC4)320,462
(C2xDic5).145(C2xC4) = C20:5M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).145(C2xC4)320,464
(C2xDic5).146(C2xC4) = C42:4Dic5φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).146(C2xC4)320,559
(C2xDic5).147(C2xC4) = C24.44D10φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).147(C2xC4)320,569
(C2xDic5).148(C2xC4) = C23.42D20φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).148(C2xC4)320,570
(C2xDic5).149(C2xC4) = C20:5(C4:C4)φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).149(C2xC4)320,603
(C2xDic5).150(C2xC4) = C20.48(C4:C4)φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).150(C2xC4)320,604
(C2xDic5).151(C2xC4) = D10:4(C4:C4)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).151(C2xC4)320,614
(C2xDic5).152(C2xC4) = C2xC20.8Q8φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).152(C2xC4)320,726
(C2xDic5).153(C2xC4) = C2xC40:8C4φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).153(C2xC4)320,727
(C2xDic5).154(C2xC4) = C2xD10:1C8φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).154(C2xC4)320,735
(C2xDic5).155(C2xC4) = M4(2)xDic5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).155(C2xC4)320,744
(C2xDic5).156(C2xC4) = Dic5:5M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).156(C2xC4)320,745
(C2xDic5).157(C2xC4) = D10:8M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).157(C2xC4)320,753
(C2xDic5).158(C2xC4) = C2xC42:D5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).158(C2xC4)320,1144
(C2xDic5).159(C2xC4) = C22xC8:D5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).159(C2xC4)320,1409
(C2xDic5).160(C2xC4) = C2xD5xM4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).160(C2xC4)320,1415
(C2xDic5).161(C2xC4) = C4xD5:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).161(C2xC4)320,1013
(C2xDic5).162(C2xC4) = C42.5F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).162(C2xC4)320,1014
(C2xDic5).163(C2xC4) = C4xC4.F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).163(C2xC4)320,1015
(C2xDic5).164(C2xC4) = C42.6F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).164(C2xC4)320,1016
(C2xDic5).165(C2xC4) = C42.11F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).165(C2xC4)320,1017
(C2xDic5).166(C2xC4) = C42.12F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).166(C2xC4)320,1018
(C2xDic5).167(C2xC4) = C20:3M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).167(C2xC4)320,1019
(C2xDic5).168(C2xC4) = C42.14F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).168(C2xC4)320,1020
(C2xDic5).169(C2xC4) = C42.15F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).169(C2xC4)320,1021
(C2xDic5).170(C2xC4) = C42.7F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).170(C2xC4)320,1022
(C2xDic5).171(C2xC4) = C42xF5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).171(C2xC4)320,1023
(C2xDic5).172(C2xC4) = C42:4F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).172(C2xC4)320,1024
(C2xDic5).173(C2xC4) = C4xC4:F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).173(C2xC4)320,1025
(C2xDic5).174(C2xC4) = C42:8F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).174(C2xC4)320,1026
(C2xDic5).175(C2xC4) = C42:9F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).175(C2xC4)320,1027
(C2xDic5).176(C2xC4) = C42:5F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).176(C2xC4)320,1028
(C2xDic5).177(C2xC4) = C2xC4xC5:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).177(C2xC4)320,1084
(C2xDic5).178(C2xC4) = C2xC20:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).178(C2xC4)320,1085
(C2xDic5).179(C2xC4) = Dic5.12M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).179(C2xC4)320,1086
(C2xDic5).180(C2xC4) = C2xD10:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).180(C2xC4)320,1089
(C2xDic5).181(C2xC4) = C2xDic5:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).181(C2xC4)320,1090
(C2xDic5).182(C2xC4) = D10.11M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).182(C2xC4)320,1091
(C2xDic5).183(C2xC4) = C20.34M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).183(C2xC4)320,1092
(C2xDic5).184(C2xC4) = D10:9M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).184(C2xC4)320,1093
(C2xDic5).185(C2xC4) = D10:10M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).185(C2xC4)320,1094
(C2xDic5).186(C2xC4) = Dic5.13M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).186(C2xC4)320,1095
(C2xDic5).187(C2xC4) = C20:8M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).187(C2xC4)320,1096
(C2xDic5).188(C2xC4) = C20.30M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).188(C2xC4)320,1097
(C2xDic5).189(C2xC4) = C4xC22:F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).189(C2xC4)320,1101
(C2xDic5).190(C2xC4) = (C22xC4):7F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).190(C2xC4)320,1102
(C2xDic5).191(C2xC4) = D10:6(C4:C4)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).191(C2xC4)320,1103
(C2xDic5).192(C2xC4) = (C2xD4):8F5φ: C2xC4/C22C2 ⊆ Out C2xDic5808-(C2xDic5).192(C2xC4)320,1109
(C2xDic5).193(C2xC4) = (C2xD4).9F5φ: C2xC4/C22C2 ⊆ Out C2xDic5808-(C2xDic5).193(C2xC4)320,1115
(C2xDic5).194(C2xC4) = (C2xQ8):7F5φ: C2xC4/C22C2 ⊆ Out C2xDic5808+(C2xDic5).194(C2xC4)320,1123
(C2xDic5).195(C2xC4) = C2xC23.2F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).195(C2xC4)320,1135
(C2xDic5).196(C2xC4) = C24.4F5φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).196(C2xC4)320,1136
(C2xDic5).197(C2xC4) = C22xD5:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).197(C2xC4)320,1587
(C2xDic5).198(C2xC4) = C22xC4.F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).198(C2xC4)320,1588
(C2xDic5).199(C2xC4) = C2xD5:M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic580(C2xDic5).199(C2xC4)320,1589
(C2xDic5).200(C2xC4) = C23xC5:C8φ: C2xC4/C22C2 ⊆ Out C2xDic5320(C2xDic5).200(C2xC4)320,1605
(C2xDic5).201(C2xC4) = C22xC22.F5φ: C2xC4/C22C2 ⊆ Out C2xDic5160(C2xDic5).201(C2xC4)320,1606
(C2xDic5).202(C2xC4) = D5xC4xC8φ: trivial image160(C2xDic5).202(C2xC4)320,311
(C2xDic5).203(C2xC4) = D5xC8:C4φ: trivial image160(C2xDic5).203(C2xC4)320,331
(C2xDic5).204(C2xC4) = Dic5.14M4(2)φ: trivial image160(C2xDic5).204(C2xC4)320,345
(C2xDic5).205(C2xC4) = C42xDic5φ: trivial image320(C2xDic5).205(C2xC4)320,557
(C2xDic5).206(C2xC4) = C2xC8xDic5φ: trivial image320(C2xDic5).206(C2xC4)320,725
(C2xDic5).207(C2xC4) = C2xC4:C4:7D5φ: trivial image160(C2xDic5).207(C2xC4)320,1174
(C2xDic5).208(C2xC4) = D5xC22xC8φ: trivial image160(C2xDic5).208(C2xC4)320,1408

׿
x
:
Z
F
o
wr
Q
<