extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xDic5).1(C2xC4) = C23:C4:5D5 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).1(C2xC4) | 320,367 |
(C2xDic5).2(C2xC4) = M4(2).19D10 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).2(C2xC4) | 320,372 |
(C2xDic5).3(C2xC4) = D5xC4.10D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).3(C2xC4) | 320,377 |
(C2xDic5).4(C2xC4) = (C2xD20):25C4 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).4(C2xC4) | 320,633 |
(C2xDic5).5(C2xC4) = M4(2).31D10 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).5(C2xC4) | 320,759 |
(C2xDic5).6(C2xC4) = C2xC4.12D20 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 160 | | (C2xDic5).6(C2xC4) | 320,763 |
(C2xDic5).7(C2xC4) = (C4xD5).D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).7(C2xC4) | 320,1099 |
(C2xDic5).8(C2xC4) = (C2xQ8).7F5 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).8(C2xC4) | 320,1127 |
(C2xDic5).9(C2xC4) = C10.51(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).9(C2xC4) | 320,279 |
(C2xDic5).10(C2xC4) = C10.52(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).10(C2xC4) | 320,282 |
(C2xDic5).11(C2xC4) = C10.54(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).11(C2xC4) | 320,296 |
(C2xDic5).12(C2xC4) = C40:11Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).12(C2xC4) | 320,306 |
(C2xDic5).13(C2xC4) = C8:6D20 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).13(C2xC4) | 320,315 |
(C2xDic5).14(C2xC4) = C42.243D10 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).14(C2xC4) | 320,317 |
(C2xDic5).15(C2xC4) = C40:Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).15(C2xC4) | 320,328 |
(C2xDic5).16(C2xC4) = C8:9D20 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).16(C2xC4) | 320,333 |
(C2xDic5).17(C2xC4) = C42.185D10 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).17(C2xC4) | 320,336 |
(C2xDic5).18(C2xC4) = C40:8C4:C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).18(C2xC4) | 320,347 |
(C2xDic5).19(C2xC4) = D10:4M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).19(C2xC4) | 320,355 |
(C2xDic5).20(C2xC4) = C5:2C8:26D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).20(C2xC4) | 320,357 |
(C2xDic5).21(C2xC4) = D5xC4.D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 40 | 8+ | (C2xDic5).21(C2xC4) | 320,371 |
(C2xDic5).22(C2xC4) = Dic5.5M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).22(C2xC4) | 320,455 |
(C2xDic5).23(C2xC4) = C42.198D10 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).23(C2xC4) | 320,458 |
(C2xDic5).24(C2xC4) = D10:5M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).24(C2xC4) | 320,463 |
(C2xDic5).25(C2xC4) = C20:6M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).25(C2xC4) | 320,465 |
(C2xDic5).26(C2xC4) = C20:7(C4:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).26(C2xC4) | 320,555 |
(C2xDic5).27(C2xC4) = (C2xC20):10Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).27(C2xC4) | 320,556 |
(C2xDic5).28(C2xC4) = C10.92(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).28(C2xC4) | 320,560 |
(C2xDic5).29(C2xC4) = (C2xC42):D5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).29(C2xC4) | 320,567 |
(C2xDic5).30(C2xC4) = C20:4(C4:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).30(C2xC4) | 320,600 |
(C2xDic5).31(C2xC4) = (C2xDic5):6Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).31(C2xC4) | 320,601 |
(C2xDic5).32(C2xC4) = C20.65(C4:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).32(C2xC4) | 320,729 |
(C2xDic5).33(C2xC4) = (C22xC8):D5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).33(C2xC4) | 320,737 |
(C2xDic5).34(C2xC4) = C40:32D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).34(C2xC4) | 320,738 |
(C2xDic5).35(C2xC4) = C20.51(C4:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).35(C2xC4) | 320,746 |
(C2xDic5).36(C2xC4) = C40:D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).36(C2xC4) | 320,754 |
(C2xDic5).37(C2xC4) = C4.89(C2xD20) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).37(C2xC4) | 320,756 |
(C2xDic5).38(C2xC4) = C42.87D10 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).38(C2xC4) | 320,1188 |
(C2xDic5).39(C2xC4) = C40.47C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).39(C2xC4) | 320,1417 |
(C2xDic5).40(C2xC4) = C20.72C24 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).40(C2xC4) | 320,1422 |
(C2xDic5).41(C2xC4) = C22:C4.F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).41(C2xC4) | 320,205 |
(C2xDic5).42(C2xC4) = (C2xC8):F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).42(C2xC4) | 320,232 |
(C2xDic5).43(C2xC4) = M4(2):F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 40 | 8 | (C2xDic5).43(C2xC4) | 320,237 |
(C2xDic5).44(C2xC4) = M4(2):4F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 8 | (C2xDic5).44(C2xC4) | 320,240 |
(C2xDic5).45(C2xC4) = C22.F5:C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).45(C2xC4) | 320,257 |
(C2xDic5).46(C2xC4) = Dic5.C42 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).46(C2xC4) | 320,1029 |
(C2xDic5).47(C2xC4) = C5:C8:8D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).47(C2xC4) | 320,1030 |
(C2xDic5).48(C2xC4) = C5:C8:D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).48(C2xC4) | 320,1031 |
(C2xDic5).49(C2xC4) = D10:M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).49(C2xC4) | 320,1032 |
(C2xDic5).50(C2xC4) = Dic5:M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).50(C2xC4) | 320,1033 |
(C2xDic5).51(C2xC4) = C20:C8:C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).51(C2xC4) | 320,1034 |
(C2xDic5).52(C2xC4) = C23.(C2xF5) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).52(C2xC4) | 320,1035 |
(C2xDic5).53(C2xC4) = C10.(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).53(C2xC4) | 320,1038 |
(C2xDic5).54(C2xC4) = D10.C42 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).54(C2xC4) | 320,1039 |
(C2xDic5).55(C2xC4) = D20:2C8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).55(C2xC4) | 320,1040 |
(C2xDic5).56(C2xC4) = Dic10:C8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).56(C2xC4) | 320,1041 |
(C2xDic5).57(C2xC4) = D10:2M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).57(C2xC4) | 320,1042 |
(C2xDic5).58(C2xC4) = C20:M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).58(C2xC4) | 320,1043 |
(C2xDic5).59(C2xC4) = C4:C4.7F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).59(C2xC4) | 320,1044 |
(C2xDic5).60(C2xC4) = Dic5.M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).60(C2xC4) | 320,1045 |
(C2xDic5).61(C2xC4) = C4:C4.9F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).61(C2xC4) | 320,1046 |
(C2xDic5).62(C2xC4) = C20.M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).62(C2xC4) | 320,1047 |
(C2xDic5).63(C2xC4) = C4:C4xF5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).63(C2xC4) | 320,1048 |
(C2xDic5).64(C2xC4) = C4:C4:5F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).64(C2xC4) | 320,1049 |
(C2xDic5).65(C2xC4) = C20:(C4:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).65(C2xC4) | 320,1050 |
(C2xDic5).66(C2xC4) = M4(2)xF5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 40 | 8 | (C2xDic5).66(C2xC4) | 320,1064 |
(C2xDic5).67(C2xC4) = M4(2):5F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 8 | (C2xDic5).67(C2xC4) | 320,1066 |
(C2xDic5).68(C2xC4) = C23:F5:5C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).68(C2xC4) | 320,1083 |
(C2xDic5).69(C2xC4) = C2xDic5.D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).69(C2xC4) | 320,1098 |
(C2xDic5).70(C2xC4) = D4xC5:C8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).70(C2xC4) | 320,1110 |
(C2xDic5).71(C2xC4) = C5:C8:7D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).71(C2xC4) | 320,1111 |
(C2xDic5).72(C2xC4) = C20:2M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).72(C2xC4) | 320,1112 |
(C2xDic5).73(C2xC4) = (C2xD4).7F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).73(C2xC4) | 320,1113 |
(C2xDic5).74(C2xC4) = (C2xD4).8F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).74(C2xC4) | 320,1114 |
(C2xDic5).75(C2xC4) = C2.(D4xF5) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).75(C2xC4) | 320,1118 |
(C2xDic5).76(C2xC4) = Q8xC5:C8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).76(C2xC4) | 320,1124 |
(C2xDic5).77(C2xC4) = C20.6M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 320 | | (C2xDic5).77(C2xC4) | 320,1126 |
(C2xDic5).78(C2xC4) = (C2xF5):Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).78(C2xC4) | 320,1128 |
(C2xDic5).79(C2xC4) = C2xC23.F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).79(C2xC4) | 320,1137 |
(C2xDic5).80(C2xC4) = C2xD4.F5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 160 | | (C2xDic5).80(C2xC4) | 320,1593 |
(C2xDic5).81(C2xC4) = Dic5.C24 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).81(C2xC4) | 320,1594 |
(C2xDic5).82(C2xC4) = C2xQ8xF5 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | | (C2xDic5).82(C2xC4) | 320,1599 |
(C2xDic5).83(C2xC4) = D5.2- 1+4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).83(C2xC4) | 320,1600 |
(C2xDic5).84(C2xC4) = (C2xC20):Q8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).84(C2xC4) | 320,273 |
(C2xDic5).85(C2xC4) = C10.49(C4xD4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).85(C2xC4) | 320,274 |
(C2xDic5).86(C2xC4) = Dic5:2C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).86(C2xC4) | 320,276 |
(C2xDic5).87(C2xC4) = C2.(C4xD20) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).87(C2xC4) | 320,280 |
(C2xDic5).88(C2xC4) = C4:Dic5:15C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).88(C2xC4) | 320,281 |
(C2xDic5).89(C2xC4) = C10.55(C4xD4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).89(C2xC4) | 320,297 |
(C2xDic5).90(C2xC4) = C8xDic10 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).90(C2xC4) | 320,305 |
(C2xDic5).91(C2xC4) = C8xD20 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).91(C2xC4) | 320,313 |
(C2xDic5).92(C2xC4) = D10.5C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).92(C2xC4) | 320,316 |
(C2xDic5).93(C2xC4) = D10.7C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).93(C2xC4) | 320,335 |
(C2xDic5).94(C2xC4) = C5:5(C8xD4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).94(C2xC4) | 320,352 |
(C2xDic5).95(C2xC4) = C22:C8:D5 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).95(C2xC4) | 320,354 |
(C2xDic5).96(C2xC4) = Dic5:2M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).96(C2xC4) | 320,356 |
(C2xDic5).97(C2xC4) = Dic10:5C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).97(C2xC4) | 320,457 |
(C2xDic5).98(C2xC4) = D20:5C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).98(C2xC4) | 320,461 |
(C2xDic5).99(C2xC4) = C42.30D10 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).99(C2xC4) | 320,466 |
(C2xDic5).100(C2xC4) = C42.31D10 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).100(C2xC4) | 320,467 |
(C2xDic5).101(C2xC4) = C4xC10.D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).101(C2xC4) | 320,558 |
(C2xDic5).102(C2xC4) = C4xC4:Dic5 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).102(C2xC4) | 320,561 |
(C2xDic5).103(C2xC4) = C24.3D10 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).103(C2xC4) | 320,571 |
(C2xDic5).104(C2xC4) = C24.4D10 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).104(C2xC4) | 320,572 |
(C2xDic5).105(C2xC4) = C24.13D10 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).105(C2xC4) | 320,584 |
(C2xDic5).106(C2xC4) = C10.96(C4xD4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).106(C2xC4) | 320,599 |
(C2xDic5).107(C2xC4) = C4:C4xDic5 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).107(C2xC4) | 320,602 |
(C2xDic5).108(C2xC4) = C10.97(C4xD4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).108(C2xC4) | 320,605 |
(C2xDic5).109(C2xC4) = C10.90(C4xD4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).109(C2xC4) | 320,617 |
(C2xDic5).110(C2xC4) = C20.42C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).110(C2xC4) | 320,728 |
(C2xDic5).111(C2xC4) = C8xC5:D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).111(C2xC4) | 320,736 |
(C2xDic5).112(C2xC4) = C20.37C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).112(C2xC4) | 320,749 |
(C2xDic5).113(C2xC4) = C40:18D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).113(C2xC4) | 320,755 |
(C2xDic5).114(C2xC4) = C2xC4xDic10 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).114(C2xC4) | 320,1139 |
(C2xDic5).115(C2xC4) = C2xDic5:3Q8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).115(C2xC4) | 320,1168 |
(C2xDic5).116(C2xC4) = C2xD20.3C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).116(C2xC4) | 320,1410 |
(C2xDic5).117(C2xC4) = C2xD20.2C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).117(C2xC4) | 320,1416 |
(C2xDic5).118(C2xC4) = D5xC8oD4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).118(C2xC4) | 320,1421 |
(C2xDic5).119(C2xC4) = C8xC5:C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).119(C2xC4) | 320,216 |
(C2xDic5).120(C2xC4) = C40:C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).120(C2xC4) | 320,217 |
(C2xDic5).121(C2xC4) = C20.31M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).121(C2xC4) | 320,218 |
(C2xDic5).122(C2xC4) = D10.3M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).122(C2xC4) | 320,230 |
(C2xDic5).123(C2xC4) = C10.(C4:C8) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).123(C2xC4) | 320,256 |
(C2xDic5).124(C2xC4) = C2xC8xF5 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).124(C2xC4) | 320,1054 |
(C2xDic5).125(C2xC4) = C2xC8:F5 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).125(C2xC4) | 320,1055 |
(C2xDic5).126(C2xC4) = C20.12C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 80 | 4 | (C2xDic5).126(C2xC4) | 320,1056 |
(C2xDic5).127(C2xC4) = C2xC10.C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).127(C2xC4) | 320,1087 |
(C2xDic5).128(C2xC4) = C4xC22.F5 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).128(C2xC4) | 320,1088 |
(C2xDic5).129(C2xC4) = Dic5.15C42 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).129(C2xC4) | 320,275 |
(C2xDic5).130(C2xC4) = C5:2(C42:8C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).130(C2xC4) | 320,277 |
(C2xDic5).131(C2xC4) = C5:2(C42:5C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).131(C2xC4) | 320,278 |
(C2xDic5).132(C2xC4) = C22.58(D4xD5) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).132(C2xC4) | 320,291 |
(C2xDic5).133(C2xC4) = D10:2(C4:C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).133(C2xC4) | 320,294 |
(C2xDic5).134(C2xC4) = C42.282D10 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).134(C2xC4) | 320,312 |
(C2xDic5).135(C2xC4) = C4xC8:D5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).135(C2xC4) | 320,314 |
(C2xDic5).136(C2xC4) = C42.182D10 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).136(C2xC4) | 320,332 |
(C2xDic5).137(C2xC4) = D10.6C42 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).137(C2xC4) | 320,334 |
(C2xDic5).138(C2xC4) = Dic5.9M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).138(C2xC4) | 320,346 |
(C2xDic5).139(C2xC4) = D5xC22:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).139(C2xC4) | 320,351 |
(C2xDic5).140(C2xC4) = D10:7M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).140(C2xC4) | 320,353 |
(C2xDic5).141(C2xC4) = M4(2).21D10 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | 8+ | (C2xDic5).141(C2xC4) | 320,378 |
(C2xDic5).142(C2xC4) = D5xC4:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).142(C2xC4) | 320,459 |
(C2xDic5).143(C2xC4) = C42.200D10 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).143(C2xC4) | 320,460 |
(C2xDic5).144(C2xC4) = C42.202D10 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).144(C2xC4) | 320,462 |
(C2xDic5).145(C2xC4) = C20:5M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).145(C2xC4) | 320,464 |
(C2xDic5).146(C2xC4) = C42:4Dic5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).146(C2xC4) | 320,559 |
(C2xDic5).147(C2xC4) = C24.44D10 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).147(C2xC4) | 320,569 |
(C2xDic5).148(C2xC4) = C23.42D20 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).148(C2xC4) | 320,570 |
(C2xDic5).149(C2xC4) = C20:5(C4:C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).149(C2xC4) | 320,603 |
(C2xDic5).150(C2xC4) = C20.48(C4:C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).150(C2xC4) | 320,604 |
(C2xDic5).151(C2xC4) = D10:4(C4:C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).151(C2xC4) | 320,614 |
(C2xDic5).152(C2xC4) = C2xC20.8Q8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).152(C2xC4) | 320,726 |
(C2xDic5).153(C2xC4) = C2xC40:8C4 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).153(C2xC4) | 320,727 |
(C2xDic5).154(C2xC4) = C2xD10:1C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).154(C2xC4) | 320,735 |
(C2xDic5).155(C2xC4) = M4(2)xDic5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).155(C2xC4) | 320,744 |
(C2xDic5).156(C2xC4) = Dic5:5M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).156(C2xC4) | 320,745 |
(C2xDic5).157(C2xC4) = D10:8M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).157(C2xC4) | 320,753 |
(C2xDic5).158(C2xC4) = C2xC42:D5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).158(C2xC4) | 320,1144 |
(C2xDic5).159(C2xC4) = C22xC8:D5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).159(C2xC4) | 320,1409 |
(C2xDic5).160(C2xC4) = C2xD5xM4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).160(C2xC4) | 320,1415 |
(C2xDic5).161(C2xC4) = C4xD5:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).161(C2xC4) | 320,1013 |
(C2xDic5).162(C2xC4) = C42.5F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).162(C2xC4) | 320,1014 |
(C2xDic5).163(C2xC4) = C4xC4.F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).163(C2xC4) | 320,1015 |
(C2xDic5).164(C2xC4) = C42.6F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).164(C2xC4) | 320,1016 |
(C2xDic5).165(C2xC4) = C42.11F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).165(C2xC4) | 320,1017 |
(C2xDic5).166(C2xC4) = C42.12F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).166(C2xC4) | 320,1018 |
(C2xDic5).167(C2xC4) = C20:3M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).167(C2xC4) | 320,1019 |
(C2xDic5).168(C2xC4) = C42.14F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).168(C2xC4) | 320,1020 |
(C2xDic5).169(C2xC4) = C42.15F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).169(C2xC4) | 320,1021 |
(C2xDic5).170(C2xC4) = C42.7F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).170(C2xC4) | 320,1022 |
(C2xDic5).171(C2xC4) = C42xF5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).171(C2xC4) | 320,1023 |
(C2xDic5).172(C2xC4) = C42:4F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).172(C2xC4) | 320,1024 |
(C2xDic5).173(C2xC4) = C4xC4:F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).173(C2xC4) | 320,1025 |
(C2xDic5).174(C2xC4) = C42:8F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).174(C2xC4) | 320,1026 |
(C2xDic5).175(C2xC4) = C42:9F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).175(C2xC4) | 320,1027 |
(C2xDic5).176(C2xC4) = C42:5F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).176(C2xC4) | 320,1028 |
(C2xDic5).177(C2xC4) = C2xC4xC5:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).177(C2xC4) | 320,1084 |
(C2xDic5).178(C2xC4) = C2xC20:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).178(C2xC4) | 320,1085 |
(C2xDic5).179(C2xC4) = Dic5.12M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).179(C2xC4) | 320,1086 |
(C2xDic5).180(C2xC4) = C2xD10:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).180(C2xC4) | 320,1089 |
(C2xDic5).181(C2xC4) = C2xDic5:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).181(C2xC4) | 320,1090 |
(C2xDic5).182(C2xC4) = D10.11M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).182(C2xC4) | 320,1091 |
(C2xDic5).183(C2xC4) = C20.34M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).183(C2xC4) | 320,1092 |
(C2xDic5).184(C2xC4) = D10:9M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).184(C2xC4) | 320,1093 |
(C2xDic5).185(C2xC4) = D10:10M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).185(C2xC4) | 320,1094 |
(C2xDic5).186(C2xC4) = Dic5.13M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).186(C2xC4) | 320,1095 |
(C2xDic5).187(C2xC4) = C20:8M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).187(C2xC4) | 320,1096 |
(C2xDic5).188(C2xC4) = C20.30M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).188(C2xC4) | 320,1097 |
(C2xDic5).189(C2xC4) = C4xC22:F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).189(C2xC4) | 320,1101 |
(C2xDic5).190(C2xC4) = (C22xC4):7F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).190(C2xC4) | 320,1102 |
(C2xDic5).191(C2xC4) = D10:6(C4:C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).191(C2xC4) | 320,1103 |
(C2xDic5).192(C2xC4) = (C2xD4):8F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).192(C2xC4) | 320,1109 |
(C2xDic5).193(C2xC4) = (C2xD4).9F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | 8- | (C2xDic5).193(C2xC4) | 320,1115 |
(C2xDic5).194(C2xC4) = (C2xQ8):7F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | 8+ | (C2xDic5).194(C2xC4) | 320,1123 |
(C2xDic5).195(C2xC4) = C2xC23.2F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).195(C2xC4) | 320,1135 |
(C2xDic5).196(C2xC4) = C24.4F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).196(C2xC4) | 320,1136 |
(C2xDic5).197(C2xC4) = C22xD5:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).197(C2xC4) | 320,1587 |
(C2xDic5).198(C2xC4) = C22xC4.F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).198(C2xC4) | 320,1588 |
(C2xDic5).199(C2xC4) = C2xD5:M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 80 | | (C2xDic5).199(C2xC4) | 320,1589 |
(C2xDic5).200(C2xC4) = C23xC5:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 320 | | (C2xDic5).200(C2xC4) | 320,1605 |
(C2xDic5).201(C2xC4) = C22xC22.F5 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic5 | 160 | | (C2xDic5).201(C2xC4) | 320,1606 |
(C2xDic5).202(C2xC4) = D5xC4xC8 | φ: trivial image | 160 | | (C2xDic5).202(C2xC4) | 320,311 |
(C2xDic5).203(C2xC4) = D5xC8:C4 | φ: trivial image | 160 | | (C2xDic5).203(C2xC4) | 320,331 |
(C2xDic5).204(C2xC4) = Dic5.14M4(2) | φ: trivial image | 160 | | (C2xDic5).204(C2xC4) | 320,345 |
(C2xDic5).205(C2xC4) = C42xDic5 | φ: trivial image | 320 | | (C2xDic5).205(C2xC4) | 320,557 |
(C2xDic5).206(C2xC4) = C2xC8xDic5 | φ: trivial image | 320 | | (C2xDic5).206(C2xC4) | 320,725 |
(C2xDic5).207(C2xC4) = C2xC4:C4:7D5 | φ: trivial image | 160 | | (C2xDic5).207(C2xC4) | 320,1174 |
(C2xDic5).208(C2xC4) = D5xC22xC8 | φ: trivial image | 160 | | (C2xDic5).208(C2xC4) | 320,1408 |