Extensions 1→N→G→Q→1 with N=C2xDic7 and Q=C6

Direct product G=NxQ with N=C2xDic7 and Q=C6
dρLabelID
C2xC6xDic7336C2xC6xDic7336,182

Semidirect products G=N:Q with N=C2xDic7 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xDic7):1C6 = D14:C12φ: C6/C1C6 ⊆ Out C2xDic756(C2xDic7):1C6336,17
(C2xDic7):2C6 = C23.2F7φ: C6/C1C6 ⊆ Out C2xDic756(C2xDic7):2C6336,22
(C2xDic7):3C6 = D4:2F7φ: C6/C1C6 ⊆ Out C2xDic75612-(C2xDic7):3C6336,126
(C2xDic7):4C6 = C2xDic7:C6φ: C6/C1C6 ⊆ Out C2xDic756(C2xDic7):4C6336,130
(C2xDic7):5C6 = C2xC4xF7φ: C6/C2C3 ⊆ Out C2xDic756(C2xDic7):5C6336,122
(C2xDic7):6C6 = C22xC7:C12φ: C6/C2C3 ⊆ Out C2xDic7112(C2xDic7):6C6336,129
(C2xDic7):7C6 = C3xD14:C4φ: C6/C3C2 ⊆ Out C2xDic7168(C2xDic7):7C6336,68
(C2xDic7):8C6 = C3xC23.D7φ: C6/C3C2 ⊆ Out C2xDic7168(C2xDic7):8C6336,73
(C2xDic7):9C6 = C3xD4:2D7φ: C6/C3C2 ⊆ Out C2xDic71684(C2xDic7):9C6336,179
(C2xDic7):10C6 = C6xC7:D4φ: C6/C3C2 ⊆ Out C2xDic7168(C2xDic7):10C6336,183
(C2xDic7):11C6 = D7xC2xC12φ: trivial image168(C2xDic7):11C6336,175

Non-split extensions G=N.Q with N=C2xDic7 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xDic7).1C6 = Dic7:C12φ: C6/C1C6 ⊆ Out C2xDic7112(C2xDic7).1C6336,15
(C2xDic7).2C6 = C28:C12φ: C6/C1C6 ⊆ Out C2xDic7112(C2xDic7).2C6336,16
(C2xDic7).3C6 = C2xC4.F7φ: C6/C1C6 ⊆ Out C2xDic7112(C2xDic7).3C6336,121
(C2xDic7).4C6 = C4xC7:C12φ: C6/C2C3 ⊆ Out C2xDic7112(C2xDic7).4C6336,14
(C2xDic7).5C6 = C3xDic7:C4φ: C6/C3C2 ⊆ Out C2xDic7336(C2xDic7).5C6336,66
(C2xDic7).6C6 = C3xC4:Dic7φ: C6/C3C2 ⊆ Out C2xDic7336(C2xDic7).6C6336,67
(C2xDic7).7C6 = C6xDic14φ: C6/C3C2 ⊆ Out C2xDic7336(C2xDic7).7C6336,174
(C2xDic7).8C6 = C12xDic7φ: trivial image336(C2xDic7).8C6336,65

׿
x
:
Z
F
o
wr
Q
<