Extensions 1→N→G→Q→1 with N=C2×Dic7 and Q=C6

Direct product G=N×Q with N=C2×Dic7 and Q=C6
dρLabelID
C2×C6×Dic7336C2xC6xDic7336,182

Semidirect products G=N:Q with N=C2×Dic7 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Dic7)⋊1C6 = D14⋊C12φ: C6/C1C6 ⊆ Out C2×Dic756(C2xDic7):1C6336,17
(C2×Dic7)⋊2C6 = C23.2F7φ: C6/C1C6 ⊆ Out C2×Dic756(C2xDic7):2C6336,22
(C2×Dic7)⋊3C6 = D42F7φ: C6/C1C6 ⊆ Out C2×Dic75612-(C2xDic7):3C6336,126
(C2×Dic7)⋊4C6 = C2×Dic7⋊C6φ: C6/C1C6 ⊆ Out C2×Dic756(C2xDic7):4C6336,130
(C2×Dic7)⋊5C6 = C2×C4×F7φ: C6/C2C3 ⊆ Out C2×Dic756(C2xDic7):5C6336,122
(C2×Dic7)⋊6C6 = C22×C7⋊C12φ: C6/C2C3 ⊆ Out C2×Dic7112(C2xDic7):6C6336,129
(C2×Dic7)⋊7C6 = C3×D14⋊C4φ: C6/C3C2 ⊆ Out C2×Dic7168(C2xDic7):7C6336,68
(C2×Dic7)⋊8C6 = C3×C23.D7φ: C6/C3C2 ⊆ Out C2×Dic7168(C2xDic7):8C6336,73
(C2×Dic7)⋊9C6 = C3×D42D7φ: C6/C3C2 ⊆ Out C2×Dic71684(C2xDic7):9C6336,179
(C2×Dic7)⋊10C6 = C6×C7⋊D4φ: C6/C3C2 ⊆ Out C2×Dic7168(C2xDic7):10C6336,183
(C2×Dic7)⋊11C6 = D7×C2×C12φ: trivial image168(C2xDic7):11C6336,175

Non-split extensions G=N.Q with N=C2×Dic7 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Dic7).1C6 = Dic7⋊C12φ: C6/C1C6 ⊆ Out C2×Dic7112(C2xDic7).1C6336,15
(C2×Dic7).2C6 = C28⋊C12φ: C6/C1C6 ⊆ Out C2×Dic7112(C2xDic7).2C6336,16
(C2×Dic7).3C6 = C2×C4.F7φ: C6/C1C6 ⊆ Out C2×Dic7112(C2xDic7).3C6336,121
(C2×Dic7).4C6 = C4×C7⋊C12φ: C6/C2C3 ⊆ Out C2×Dic7112(C2xDic7).4C6336,14
(C2×Dic7).5C6 = C3×Dic7⋊C4φ: C6/C3C2 ⊆ Out C2×Dic7336(C2xDic7).5C6336,66
(C2×Dic7).6C6 = C3×C4⋊Dic7φ: C6/C3C2 ⊆ Out C2×Dic7336(C2xDic7).6C6336,67
(C2×Dic7).7C6 = C6×Dic14φ: C6/C3C2 ⊆ Out C2×Dic7336(C2xDic7).7C6336,174
(C2×Dic7).8C6 = C12×Dic7φ: trivial image336(C2xDic7).8C6336,65

׿
×
𝔽