Copied to
clipboard

G = C4×C3≀C3order 324 = 22·34

Direct product of C4 and C3≀C3

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C4×C3≀C3, He33C12, C337C12, C12.2He3, 3- 1+21C12, (C4×He3)⋊1C3, C3.2(C4×He3), C6.3(C2×He3), (C32×C12)⋊1C3, (C2×He3).6C6, (C32×C6).10C6, (C3×C12).1C32, C32.1(C3×C12), (C4×3- 1+2)⋊1C3, (C2×3- 1+2).1C6, C2.(C2×C3≀C3), (C3×C6).2(C3×C6), (C2×C3≀C3).4C2, SmallGroup(324,31)

Series: Derived Chief Lower central Upper central

C1C32 — C4×C3≀C3
C1C3C32C3×C6C32×C6C2×C3≀C3 — C4×C3≀C3
C1C3C32 — C4×C3≀C3
C1C12C3×C12 — C4×C3≀C3

Generators and relations for C4×C3≀C3
 G = < a,b,c,d,e | a4=b3=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, be=eb, cd=dc, ce=ec, ede-1=bc-1d >

Subgroups: 150 in 60 conjugacy classes, 24 normal (18 characteristic)
C1, C2, C3, C3, C4, C6, C6, C9, C32, C32, C12, C12, C18, C3×C6, C3×C6, He3, 3- 1+2, C33, C36, C3×C12, C3×C12, C2×He3, C2×3- 1+2, C32×C6, C3≀C3, C4×He3, C4×3- 1+2, C32×C12, C2×C3≀C3, C4×C3≀C3
Quotients: C1, C2, C3, C4, C6, C32, C12, C3×C6, He3, C3×C12, C2×He3, C3≀C3, C4×He3, C2×C3≀C3, C4×C3≀C3

Smallest permutation representation of C4×C3≀C3
On 36 points
Generators in S36
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(5 33 10)(6 34 11)(7 35 12)(8 36 9)(17 22 27)(18 23 28)(19 24 25)(20 21 26)
(1 14 29)(2 15 30)(3 16 31)(4 13 32)(5 33 10)(6 34 11)(7 35 12)(8 36 9)(17 27 22)(18 28 23)(19 25 24)(20 26 21)
(1 26 35)(2 27 36)(3 28 33)(4 25 34)(5 31 18)(6 32 19)(7 29 20)(8 30 17)(9 15 22)(10 16 23)(11 13 24)(12 14 21)
(1 14 29)(2 15 30)(3 16 31)(4 13 32)(5 33 10)(6 34 11)(7 35 12)(8 36 9)(17 22 27)(18 23 28)(19 24 25)(20 21 26)

G:=sub<Sym(36)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,22,27)(18,23,28)(19,24,25)(20,21,26), (1,14,29)(2,15,30)(3,16,31)(4,13,32)(5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,27,22)(18,28,23)(19,25,24)(20,26,21), (1,26,35)(2,27,36)(3,28,33)(4,25,34)(5,31,18)(6,32,19)(7,29,20)(8,30,17)(9,15,22)(10,16,23)(11,13,24)(12,14,21), (1,14,29)(2,15,30)(3,16,31)(4,13,32)(5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,22,27)(18,23,28)(19,24,25)(20,21,26)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,22,27)(18,23,28)(19,24,25)(20,21,26), (1,14,29)(2,15,30)(3,16,31)(4,13,32)(5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,27,22)(18,28,23)(19,25,24)(20,26,21), (1,26,35)(2,27,36)(3,28,33)(4,25,34)(5,31,18)(6,32,19)(7,29,20)(8,30,17)(9,15,22)(10,16,23)(11,13,24)(12,14,21), (1,14,29)(2,15,30)(3,16,31)(4,13,32)(5,33,10)(6,34,11)(7,35,12)(8,36,9)(17,22,27)(18,23,28)(19,24,25)(20,21,26) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(5,33,10),(6,34,11),(7,35,12),(8,36,9),(17,22,27),(18,23,28),(19,24,25),(20,21,26)], [(1,14,29),(2,15,30),(3,16,31),(4,13,32),(5,33,10),(6,34,11),(7,35,12),(8,36,9),(17,27,22),(18,28,23),(19,25,24),(20,26,21)], [(1,26,35),(2,27,36),(3,28,33),(4,25,34),(5,31,18),(6,32,19),(7,29,20),(8,30,17),(9,15,22),(10,16,23),(11,13,24),(12,14,21)], [(1,14,29),(2,15,30),(3,16,31),(4,13,32),(5,33,10),(6,34,11),(7,35,12),(8,36,9),(17,22,27),(18,23,28),(19,24,25),(20,21,26)]])

68 conjugacy classes

class 1  2 3A3B3C···3J3K3L4A4B6A6B6C···6J6K6L9A9B9C9D12A12B12C12D12E···12T12U12V12W12X18A18B18C18D36A···36H
order12333···33344666···66699991212121212···12121212121818181836···36
size11113···39911113···399999911113···3999999999···9

68 irreducible representations

dim111111111111333333
type++
imageC1C2C3C3C3C4C6C6C6C12C12C12He3C2×He3C3≀C3C4×He3C2×C3≀C3C4×C3≀C3
kernelC4×C3≀C3C2×C3≀C3C4×He3C4×3- 1+2C32×C12C3≀C3C2×He3C2×3- 1+2C32×C6He33- 1+2C33C12C6C4C3C2C1
# reps1124222424842264612

Matrix representation of C4×C3≀C3 in GL3(𝔽13) generated by

800
080
008
,
300
010
009
,
900
090
009
,
070
007
400
,
900
010
001
G:=sub<GL(3,GF(13))| [8,0,0,0,8,0,0,0,8],[3,0,0,0,1,0,0,0,9],[9,0,0,0,9,0,0,0,9],[0,0,4,7,0,0,0,7,0],[9,0,0,0,1,0,0,0,1] >;

C4×C3≀C3 in GAP, Magma, Sage, TeX

C_4\times C_3\wr C_3
% in TeX

G:=Group("C4xC3wrC3");
// GroupNames label

G:=SmallGroup(324,31);
// by ID

G=gap.SmallGroup(324,31);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-3,-3,108,386,2170]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c^-1*d>;
// generators/relations

׿
×
𝔽