Extensions 1→N→G→Q→1 with N=C2×He3 and Q=C6

Direct product G=N×Q with N=C2×He3 and Q=C6
dρLabelID
C2×C6×He3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C2×He3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×He3)⋊C6 = C2×C3≀S3φ: C6/C1C6 ⊆ Out C2×He3183(C2xHe3):C6324,68
(C2×He3)⋊2C6 = C22×C3≀C3φ: C6/C2C3 ⊆ Out C2×He336(C2xHe3):2C6324,86
(C2×He3)⋊3C6 = C22×He3⋊C3φ: C6/C2C3 ⊆ Out C2×He3108(C2xHe3):3C6324,88
(C2×He3)⋊4C6 = C6×C32⋊C6φ: C6/C3C2 ⊆ Out C2×He3366(C2xHe3):4C6324,138
(C2×He3)⋊5C6 = C6×He3⋊C2φ: C6/C3C2 ⊆ Out C2×He354(C2xHe3):5C6324,145

Non-split extensions G=N.Q with N=C2×He3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×He3).1C6 = He3⋊C12φ: C6/C1C6 ⊆ Out C2×He3363(C2xHe3).1C6324,13
(C2×He3).2C6 = He3.C12φ: C6/C1C6 ⊆ Out C2×He31083(C2xHe3).2C6324,15
(C2×He3).3C6 = He3.2C12φ: C6/C1C6 ⊆ Out C2×He31083(C2xHe3).3C6324,17
(C2×He3).4C6 = C2×He3.C6φ: C6/C1C6 ⊆ Out C2×He3543(C2xHe3).4C6324,70
(C2×He3).5C6 = C2×He3.2C6φ: C6/C1C6 ⊆ Out C2×He3543(C2xHe3).5C6324,72
(C2×He3).6C6 = C4×C3≀C3φ: C6/C2C3 ⊆ Out C2×He3363(C2xHe3).6C6324,31
(C2×He3).7C6 = C4×He3.C3φ: C6/C2C3 ⊆ Out C2×He31083(C2xHe3).7C6324,32
(C2×He3).8C6 = C4×He3⋊C3φ: C6/C2C3 ⊆ Out C2×He31083(C2xHe3).8C6324,33
(C2×He3).9C6 = C22×He3.C3φ: C6/C2C3 ⊆ Out C2×He3108(C2xHe3).9C6324,87
(C2×He3).10C6 = C3×C32⋊C12φ: C6/C3C2 ⊆ Out C2×He3366(C2xHe3).10C6324,92
(C2×He3).11C6 = C3×He33C4φ: C6/C3C2 ⊆ Out C2×He3108(C2xHe3).11C6324,99
(C2×He3).12C6 = He3.5C12φ: C6/C3C2 ⊆ Out C2×He31083(C2xHe3).12C6324,102
(C2×He3).13C6 = C2×He3.4C6φ: C6/C3C2 ⊆ Out C2×He3543(C2xHe3).13C6324,148
(C2×He3).14C6 = C12×He3φ: trivial image108(C2xHe3).14C6324,106
(C2×He3).15C6 = C4×C9○He3φ: trivial image1083(C2xHe3).15C6324,108
(C2×He3).16C6 = C22×C9○He3φ: trivial image108(C2xHe3).16C6324,154

׿
×
𝔽