Copied to
clipboard

G = C4×He3.C3order 324 = 22·34

Direct product of C4 and He3.C3

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C4×He3.C3, C12.3He3, He3.4C12, 3- 1+22C12, (C3×C36)⋊2C3, (C3×C9)⋊9C12, (C4×He3).C3, C3.3(C4×He3), C6.4(C2×He3), (C3×C18).12C6, (C2×He3).7C6, C32.2(C3×C12), (C3×C12).2C32, (C4×3- 1+2)⋊2C3, (C2×3- 1+2).2C6, (C3×C6).3(C3×C6), C2.(C2×He3.C3), (C2×He3.C3).4C2, SmallGroup(324,32)

Series: Derived Chief Lower central Upper central

C1C32 — C4×He3.C3
C1C3C32C3×C6C3×C18C2×He3.C3 — C4×He3.C3
C1C3C32 — C4×He3.C3
C1C12C3×C12 — C4×He3.C3

Generators and relations for C4×He3.C3
 G = < a,b,c,d,e | a4=b3=c3=d3=1, e3=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, be=eb, cd=dc, ce=ec, ede-1=bc-1d >

3C3
9C3
3C6
9C6
3C9
3C9
3C9
3C32
3C12
9C12
3C3×C6
3C18
3C18
3C18
3C36
3C36
3C3×C12
3C36

Smallest permutation representation of C4×He3.C3
On 108 points
Generators in S108
(1 64 10 98)(2 65 11 99)(3 66 12 91)(4 67 13 92)(5 68 14 93)(6 69 15 94)(7 70 16 95)(8 71 17 96)(9 72 18 97)(19 61 37 79)(20 62 38 80)(21 63 39 81)(22 55 40 73)(23 56 41 74)(24 57 42 75)(25 58 43 76)(26 59 44 77)(27 60 45 78)(28 102 48 82)(29 103 49 83)(30 104 50 84)(31 105 51 85)(32 106 52 86)(33 107 53 87)(34 108 54 88)(35 100 46 89)(36 101 47 90)
(1 62 29)(2 63 30)(3 55 31)(4 56 32)(5 57 33)(6 58 34)(7 59 35)(8 60 36)(9 61 28)(10 80 49)(11 81 50)(12 73 51)(13 74 52)(14 75 53)(15 76 54)(16 77 46)(17 78 47)(18 79 48)(19 82 97)(20 83 98)(21 84 99)(22 85 91)(23 86 92)(24 87 93)(25 88 94)(26 89 95)(27 90 96)(37 102 72)(38 103 64)(39 104 65)(40 105 66)(41 106 67)(42 107 68)(43 108 69)(44 100 70)(45 101 71)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)
(2 63 33)(3 31 61)(5 57 36)(6 34 55)(8 60 30)(9 28 58)(11 81 53)(12 51 79)(14 75 47)(15 54 73)(17 78 50)(18 48 76)(19 91 85)(20 23 26)(21 87 99)(22 94 88)(24 90 93)(25 97 82)(27 84 96)(29 35 32)(37 66 105)(38 41 44)(39 107 65)(40 69 108)(42 101 68)(43 72 102)(45 104 71)(46 52 49)(56 59 62)(74 77 80)(83 89 86)(100 106 103)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,64,10,98)(2,65,11,99)(3,66,12,91)(4,67,13,92)(5,68,14,93)(6,69,15,94)(7,70,16,95)(8,71,17,96)(9,72,18,97)(19,61,37,79)(20,62,38,80)(21,63,39,81)(22,55,40,73)(23,56,41,74)(24,57,42,75)(25,58,43,76)(26,59,44,77)(27,60,45,78)(28,102,48,82)(29,103,49,83)(30,104,50,84)(31,105,51,85)(32,106,52,86)(33,107,53,87)(34,108,54,88)(35,100,46,89)(36,101,47,90), (1,62,29)(2,63,30)(3,55,31)(4,56,32)(5,57,33)(6,58,34)(7,59,35)(8,60,36)(9,61,28)(10,80,49)(11,81,50)(12,73,51)(13,74,52)(14,75,53)(15,76,54)(16,77,46)(17,78,47)(18,79,48)(19,82,97)(20,83,98)(21,84,99)(22,85,91)(23,86,92)(24,87,93)(25,88,94)(26,89,95)(27,90,96)(37,102,72)(38,103,64)(39,104,65)(40,105,66)(41,106,67)(42,107,68)(43,108,69)(44,100,70)(45,101,71), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108), (2,63,33)(3,31,61)(5,57,36)(6,34,55)(8,60,30)(9,28,58)(11,81,53)(12,51,79)(14,75,47)(15,54,73)(17,78,50)(18,48,76)(19,91,85)(20,23,26)(21,87,99)(22,94,88)(24,90,93)(25,97,82)(27,84,96)(29,35,32)(37,66,105)(38,41,44)(39,107,65)(40,69,108)(42,101,68)(43,72,102)(45,104,71)(46,52,49)(56,59,62)(74,77,80)(83,89,86)(100,106,103), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,64,10,98)(2,65,11,99)(3,66,12,91)(4,67,13,92)(5,68,14,93)(6,69,15,94)(7,70,16,95)(8,71,17,96)(9,72,18,97)(19,61,37,79)(20,62,38,80)(21,63,39,81)(22,55,40,73)(23,56,41,74)(24,57,42,75)(25,58,43,76)(26,59,44,77)(27,60,45,78)(28,102,48,82)(29,103,49,83)(30,104,50,84)(31,105,51,85)(32,106,52,86)(33,107,53,87)(34,108,54,88)(35,100,46,89)(36,101,47,90), (1,62,29)(2,63,30)(3,55,31)(4,56,32)(5,57,33)(6,58,34)(7,59,35)(8,60,36)(9,61,28)(10,80,49)(11,81,50)(12,73,51)(13,74,52)(14,75,53)(15,76,54)(16,77,46)(17,78,47)(18,79,48)(19,82,97)(20,83,98)(21,84,99)(22,85,91)(23,86,92)(24,87,93)(25,88,94)(26,89,95)(27,90,96)(37,102,72)(38,103,64)(39,104,65)(40,105,66)(41,106,67)(42,107,68)(43,108,69)(44,100,70)(45,101,71), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108), (2,63,33)(3,31,61)(5,57,36)(6,34,55)(8,60,30)(9,28,58)(11,81,53)(12,51,79)(14,75,47)(15,54,73)(17,78,50)(18,48,76)(19,91,85)(20,23,26)(21,87,99)(22,94,88)(24,90,93)(25,97,82)(27,84,96)(29,35,32)(37,66,105)(38,41,44)(39,107,65)(40,69,108)(42,101,68)(43,72,102)(45,104,71)(46,52,49)(56,59,62)(74,77,80)(83,89,86)(100,106,103), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,64,10,98),(2,65,11,99),(3,66,12,91),(4,67,13,92),(5,68,14,93),(6,69,15,94),(7,70,16,95),(8,71,17,96),(9,72,18,97),(19,61,37,79),(20,62,38,80),(21,63,39,81),(22,55,40,73),(23,56,41,74),(24,57,42,75),(25,58,43,76),(26,59,44,77),(27,60,45,78),(28,102,48,82),(29,103,49,83),(30,104,50,84),(31,105,51,85),(32,106,52,86),(33,107,53,87),(34,108,54,88),(35,100,46,89),(36,101,47,90)], [(1,62,29),(2,63,30),(3,55,31),(4,56,32),(5,57,33),(6,58,34),(7,59,35),(8,60,36),(9,61,28),(10,80,49),(11,81,50),(12,73,51),(13,74,52),(14,75,53),(15,76,54),(16,77,46),(17,78,47),(18,79,48),(19,82,97),(20,83,98),(21,84,99),(22,85,91),(23,86,92),(24,87,93),(25,88,94),(26,89,95),(27,90,96),(37,102,72),(38,103,64),(39,104,65),(40,105,66),(41,106,67),(42,107,68),(43,108,69),(44,100,70),(45,101,71)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108)], [(2,63,33),(3,31,61),(5,57,36),(6,34,55),(8,60,30),(9,28,58),(11,81,53),(12,51,79),(14,75,47),(15,54,73),(17,78,50),(18,48,76),(19,91,85),(20,23,26),(21,87,99),(22,94,88),(24,90,93),(25,97,82),(27,84,96),(29,35,32),(37,66,105),(38,41,44),(39,107,65),(40,69,108),(42,101,68),(43,72,102),(45,104,71),(46,52,49),(56,59,62),(74,77,80),(83,89,86),(100,106,103)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)]])

68 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B6A6B6C6D6E6F9A···9F9G9H9I9J12A12B12C12D12E12F12G12H12I12J12K12L18A···18F18G18H18I18J36A···36L36M···36T
order12333333446666669···9999912121212121212121212121218···181818181836···3636···36
size11113399111133993···399991111333399993···399993···39···9

68 irreducible representations

dim111111111111333333
type++
imageC1C2C3C3C3C4C6C6C6C12C12C12He3C2×He3He3.C3C4×He3C2×He3.C3C4×He3.C3
kernelC4×He3.C3C2×He3.C3C3×C36C4×He3C4×3- 1+2He3.C3C3×C18C2×He3C2×3- 1+2C3×C9He33- 1+2C12C6C4C3C2C1
# reps1122422244482264612

Matrix representation of C4×He3.C3 in GL4(𝔽37) generated by

6000
0100
0010
0001
,
1000
0010
0001
0100
,
1000
01000
00100
00010
,
26000
0100
00260
00010
,
10000
0282528
0282825
0252828
G:=sub<GL(4,GF(37))| [6,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0],[1,0,0,0,0,10,0,0,0,0,10,0,0,0,0,10],[26,0,0,0,0,1,0,0,0,0,26,0,0,0,0,10],[10,0,0,0,0,28,28,25,0,25,28,28,0,28,25,28] >;

C4×He3.C3 in GAP, Magma, Sage, TeX

C_4\times {\rm He}_3.C_3
% in TeX

G:=Group("C4xHe3.C3");
// GroupNames label

G:=SmallGroup(324,32);
// by ID

G=gap.SmallGroup(324,32);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-3,-3,108,386,338,2170]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^3=d^3=1,e^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c^-1*d>;
// generators/relations

Export

Subgroup lattice of C4×He3.C3 in TeX

׿
×
𝔽