extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC18).1C6 = C32:Dic9 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 108 | | (C3xC18).1C6 | 324,8 |
(C3xC18).2C6 = He3.Dic3 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 108 | 6- | (C3xC18).2C6 | 324,16 |
(C3xC18).3C6 = He3.2Dic3 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 108 | 6- | (C3xC18).3C6 | 324,18 |
(C3xC18).4C6 = C9:C36 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 36 | 6 | (C3xC18).4C6 | 324,9 |
(C3xC18).5C6 = C2xC9:C18 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 36 | 6 | (C3xC18).5C6 | 324,64 |
(C3xC18).6C6 = C3xC9:C12 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 36 | 6 | (C3xC18).6C6 | 324,94 |
(C3xC18).7C6 = C33.Dic3 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 108 | | (C3xC18).7C6 | 324,100 |
(C3xC18).8C6 = He3.4Dic3 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 108 | 6- | (C3xC18).8C6 | 324,101 |
(C3xC18).9C6 = Dic3x3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3xC18 | 36 | 6 | (C3xC18).9C6 | 324,95 |
(C3xC18).10C6 = C4xC32:C9 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | | (C3xC18).10C6 | 324,27 |
(C3xC18).11C6 = C4xC9:C9 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 324 | | (C3xC18).11C6 | 324,28 |
(C3xC18).12C6 = C4xHe3.C3 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | 3 | (C3xC18).12C6 | 324,32 |
(C3xC18).13C6 = C4xHe3:C3 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | 3 | (C3xC18).13C6 | 324,33 |
(C3xC18).14C6 = C4xC3.He3 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | 3 | (C3xC18).14C6 | 324,34 |
(C3xC18).15C6 = C22xC9:C9 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 324 | | (C3xC18).15C6 | 324,83 |
(C3xC18).16C6 = C22xC3.He3 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | | (C3xC18).16C6 | 324,89 |
(C3xC18).17C6 = C4xC27:C3 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | 3 | (C3xC18).17C6 | 324,30 |
(C3xC18).18C6 = C22xC27:C3 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | | (C3xC18).18C6 | 324,85 |
(C3xC18).19C6 = C12x3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | | (C3xC18).19C6 | 324,107 |
(C3xC18).20C6 = C4xC9oHe3 | φ: C6/C2 → C3 ⊆ Aut C3xC18 | 108 | 3 | (C3xC18).20C6 | 324,108 |
(C3xC18).21C6 = Dic3xC27 | φ: C6/C3 → C2 ⊆ Aut C3xC18 | 108 | 2 | (C3xC18).21C6 | 324,11 |
(C3xC18).22C6 = S3xC54 | φ: C6/C3 → C2 ⊆ Aut C3xC18 | 108 | 2 | (C3xC18).22C6 | 324,66 |
(C3xC18).23C6 = Dic3xC3xC9 | φ: C6/C3 → C2 ⊆ Aut C3xC18 | 108 | | (C3xC18).23C6 | 324,91 |
(C3xC18).24C6 = C9xDic9 | φ: C6/C3 → C2 ⊆ Aut C3xC18 | 36 | 2 | (C3xC18).24C6 | 324,6 |
(C3xC18).25C6 = D9xC18 | φ: C6/C3 → C2 ⊆ Aut C3xC18 | 36 | 2 | (C3xC18).25C6 | 324,61 |
(C3xC18).26C6 = C32xDic9 | φ: C6/C3 → C2 ⊆ Aut C3xC18 | 108 | | (C3xC18).26C6 | 324,90 |
(C3xC18).27C6 = C3xC9:Dic3 | φ: C6/C3 → C2 ⊆ Aut C3xC18 | 108 | | (C3xC18).27C6 | 324,96 |