direct product, metabelian, supersoluble, monomial
Aliases: C2×He3.2S3, He3.4D6, C9⋊S3⋊4C6, (C3×C18)⋊3C6, (C2×He3).8S3, C32.7(S3×C6), C6.8(C32⋊C6), He3⋊C3⋊3C22, (C2×C9⋊S3)⋊3C3, (C3×C9)⋊4(C2×C6), (C3×C6).18(C3×S3), C3.4(C2×C32⋊C6), (C2×He3⋊C3)⋊2C2, SmallGroup(324,73)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C9 — C2×He3.2S3 |
Generators and relations for C2×He3.2S3
G = < a,b,c,d,e,f | a2=b3=c3=d3=f2=1, e3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=bc-1, be=eb, fbf=b-1, cd=dc, ce=ec, fcf=c-1, ede-1=b-1cd, df=fd, fef=c-1e2 >
Subgroups: 448 in 56 conjugacy classes, 18 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, D6, C2×C6, D9, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C9, He3, He3, D18, S3×C6, C2×C3⋊S3, C32⋊C6, C9⋊S3, C3×C18, C2×He3, C2×He3, He3⋊C3, C2×C32⋊C6, C2×C9⋊S3, He3.2S3, C2×He3⋊C3, C2×He3.2S3
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, S3×C6, C32⋊C6, C2×C32⋊C6, He3.2S3, C2×He3.2S3
Character table of C2×He3.2S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 9A | 9B | 9C | 18A | 18B | 18C | |
size | 1 | 1 | 27 | 27 | 2 | 6 | 9 | 9 | 18 | 18 | 2 | 6 | 9 | 9 | 18 | 18 | 27 | 27 | 27 | 27 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | -1 | -1 | ζ65 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | ζ6 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | -1 | -1 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | ζ32 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 6 |
ρ9 | 1 | -1 | -1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | -1 | -1 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | ζ3 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 6 |
ρ10 | 1 | -1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | -1 | -1 | ζ6 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | ζ65 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 6 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ12 | 1 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -2 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 2 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ16 | 2 | -2 | 0 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -2 | -2 | 1+√-3 | 1-√-3 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | complex lifted from S3×C6 |
ρ17 | 2 | 2 | 0 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 2 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -2 | -2 | 1-√-3 | 1+√-3 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | complex lifted from S3×C6 |
ρ19 | 6 | 6 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ20 | 6 | -6 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | -6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C6 |
ρ21 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | orthogonal faithful |
ρ22 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | orthogonal lifted from He3.2S3 |
ρ23 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | orthogonal faithful |
ρ24 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | orthogonal lifted from He3.2S3 |
ρ25 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | orthogonal lifted from He3.2S3 |
ρ26 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | orthogonal faithful |
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 28)(8 29)(9 30)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)
(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(37 43 40)(38 44 41)(39 45 42)(46 49 52)(47 50 53)(48 51 54)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(1 16 22)(2 11 23)(3 15 24)(4 10 25)(5 14 26)(6 18 27)(7 13 19)(8 17 20)(9 12 21)(28 40 46)(29 44 47)(30 39 48)(31 43 49)(32 38 50)(33 42 51)(34 37 52)(35 41 53)(36 45 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(2 9)(3 8)(4 7)(5 6)(10 13)(11 12)(14 18)(15 17)(19 25)(20 24)(21 23)(26 27)(28 34)(29 33)(30 32)(35 36)(37 40)(38 39)(41 45)(42 44)(46 52)(47 51)(48 50)(53 54)
G:=sub<Sym(54)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,16,22)(2,11,23)(3,15,24)(4,10,25)(5,14,26)(6,18,27)(7,13,19)(8,17,20)(9,12,21)(28,40,46)(29,44,47)(30,39,48)(31,43,49)(32,38,50)(33,42,51)(34,37,52)(35,41,53)(36,45,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,9)(3,8)(4,7)(5,6)(10,13)(11,12)(14,18)(15,17)(19,25)(20,24)(21,23)(26,27)(28,34)(29,33)(30,32)(35,36)(37,40)(38,39)(41,45)(42,44)(46,52)(47,51)(48,50)(53,54)>;
G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,28)(8,29)(9,30)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,16,22)(2,11,23)(3,15,24)(4,10,25)(5,14,26)(6,18,27)(7,13,19)(8,17,20)(9,12,21)(28,40,46)(29,44,47)(30,39,48)(31,43,49)(32,38,50)(33,42,51)(34,37,52)(35,41,53)(36,45,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,9)(3,8)(4,7)(5,6)(10,13)(11,12)(14,18)(15,17)(19,25)(20,24)(21,23)(26,27)(28,34)(29,33)(30,32)(35,36)(37,40)(38,39)(41,45)(42,44)(46,52)(47,51)(48,50)(53,54) );
G=PermutationGroup([[(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,28),(8,29),(9,30),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54)], [(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(37,43,40),(38,44,41),(39,45,42),(46,49,52),(47,50,53),(48,51,54)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(1,16,22),(2,11,23),(3,15,24),(4,10,25),(5,14,26),(6,18,27),(7,13,19),(8,17,20),(9,12,21),(28,40,46),(29,44,47),(30,39,48),(31,43,49),(32,38,50),(33,42,51),(34,37,52),(35,41,53),(36,45,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(2,9),(3,8),(4,7),(5,6),(10,13),(11,12),(14,18),(15,17),(19,25),(20,24),(21,23),(26,27),(28,34),(29,33),(30,32),(35,36),(37,40),(38,39),(41,45),(42,44),(46,52),(47,51),(48,50),(53,54)]])
Matrix representation of C2×He3.2S3 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
11 | 11 | 18 | 18 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 7 | 0 | 0 | 18 | 18 |
18 | 1 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 1 | 0 | 0 |
0 | 11 | 18 | 18 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 1 |
0 | 7 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 18 | 1 |
7 | 7 | 0 | 0 | 17 | 18 |
0 | 0 | 0 | 0 | 8 | 0 |
1 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 1 | 0 | 12 | 0 |
0 | 0 | 0 | 1 | 12 | 0 |
12 | 2 | 0 | 0 | 0 | 0 |
17 | 14 | 0 | 0 | 0 | 0 |
18 | 2 | 7 | 5 | 0 | 0 |
16 | 0 | 14 | 2 | 0 | 0 |
5 | 0 | 0 | 0 | 14 | 2 |
0 | 14 | 0 | 0 | 17 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
11 | 11 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
7 | 7 | 0 | 0 | 18 | 18 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,11,0,0,7,0,1,11,0,0,7,0,0,18,1,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[18,18,8,0,12,0,1,0,0,11,0,7,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[0,7,0,1,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,18,17,8,8,12,12,1,18,0,0,0,0],[12,17,18,16,5,0,2,14,2,0,0,14,0,0,7,14,0,0,0,0,5,2,0,0,0,0,0,0,14,17,0,0,0,0,2,12],[0,1,0,11,0,7,1,0,0,11,0,7,0,0,1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18] >;
C2×He3.2S3 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3._2S_3
% in TeX
G:=Group("C2xHe3.2S3");
// GroupNames label
G:=SmallGroup(324,73);
// by ID
G=gap.SmallGroup(324,73);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,3171,303,453,2164,1096,7781]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=f^2=1,e^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,e*d*e^-1=b^-1*c*d,d*f=f*d,f*e*f=c^-1*e^2>;
// generators/relations
Export