Extensions 1→N→G→Q→1 with N=C4 and Q=S3×C14

Direct product G=N×Q with N=C4 and Q=S3×C14
dρLabelID
S3×C2×C28168S3xC2xC28336,185

Semidirect products G=N:Q with N=C4 and Q=S3×C14
extensionφ:Q→Aut NdρLabelID
C41(S3×C14) = S3×C7×D4φ: S3×C14/S3×C7C2 ⊆ Aut C4844C4:1(S3xC14)336,188
C42(S3×C14) = C14×D12φ: S3×C14/C42C2 ⊆ Aut C4168C4:2(S3xC14)336,186

Non-split extensions G=N.Q with N=C4 and Q=S3×C14
extensionφ:Q→Aut NdρLabelID
C4.1(S3×C14) = C7×D4⋊S3φ: S3×C14/S3×C7C2 ⊆ Aut C41684C4.1(S3xC14)336,85
C4.2(S3×C14) = C7×D4.S3φ: S3×C14/S3×C7C2 ⊆ Aut C41684C4.2(S3xC14)336,86
C4.3(S3×C14) = C7×Q82S3φ: S3×C14/S3×C7C2 ⊆ Aut C41684C4.3(S3xC14)336,87
C4.4(S3×C14) = C7×C3⋊Q16φ: S3×C14/S3×C7C2 ⊆ Aut C43364C4.4(S3xC14)336,88
C4.5(S3×C14) = C7×D42S3φ: S3×C14/S3×C7C2 ⊆ Aut C41684C4.5(S3xC14)336,189
C4.6(S3×C14) = S3×C7×Q8φ: S3×C14/S3×C7C2 ⊆ Aut C41684C4.6(S3xC14)336,190
C4.7(S3×C14) = C7×Q83S3φ: S3×C14/S3×C7C2 ⊆ Aut C41684C4.7(S3xC14)336,191
C4.8(S3×C14) = C7×C24⋊C2φ: S3×C14/C42C2 ⊆ Aut C41682C4.8(S3xC14)336,76
C4.9(S3×C14) = C7×D24φ: S3×C14/C42C2 ⊆ Aut C41682C4.9(S3xC14)336,77
C4.10(S3×C14) = C7×Dic12φ: S3×C14/C42C2 ⊆ Aut C43362C4.10(S3xC14)336,78
C4.11(S3×C14) = C14×Dic6φ: S3×C14/C42C2 ⊆ Aut C4336C4.11(S3xC14)336,184
C4.12(S3×C14) = S3×C56central extension (φ=1)1682C4.12(S3xC14)336,74
C4.13(S3×C14) = C7×C8⋊S3central extension (φ=1)1682C4.13(S3xC14)336,75
C4.14(S3×C14) = C14×C3⋊C8central extension (φ=1)336C4.14(S3xC14)336,79
C4.15(S3×C14) = C7×C4.Dic3central extension (φ=1)1682C4.15(S3xC14)336,80
C4.16(S3×C14) = C7×C4○D12central extension (φ=1)1682C4.16(S3xC14)336,187

׿
×
𝔽