Copied to
clipboard

G = C7×D4⋊S3order 336 = 24·3·7

Direct product of C7 and D4⋊S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C7×D4⋊S3, C219D8, D122C14, C28.36D6, C42.47D4, C84.43C22, D4⋊(S3×C7), C32(C7×D8), C3⋊C81C14, (C7×D4)⋊4S3, C6.7(C7×D4), (D4×C21)⋊7C2, (C3×D4)⋊1C14, (C7×D12)⋊8C2, C4.1(S3×C14), C12.1(C2×C14), C14.23(C3⋊D4), (C7×C3⋊C8)⋊8C2, C2.4(C7×C3⋊D4), SmallGroup(336,85)

Series: Derived Chief Lower central Upper central

C1C12 — C7×D4⋊S3
C1C3C6C12C84C7×D12 — C7×D4⋊S3
C3C6C12 — C7×D4⋊S3
C1C14C28C7×D4

Generators and relations for C7×D4⋊S3
 G = < a,b,c,d,e | a7=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >

4C2
12C2
2C22
6C22
4C6
4S3
4C14
12C14
3D4
3C8
2C2×C6
2D6
2C2×C14
6C2×C14
4C42
4S3×C7
3D8
3C7×D4
3C56
2S3×C14
2C2×C42
3C7×D8

Smallest permutation representation of C7×D4⋊S3
On 168 points
Generators in S168
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)
(1 135 55 19)(2 136 56 20)(3 137 50 21)(4 138 51 15)(5 139 52 16)(6 140 53 17)(7 134 54 18)(8 106 144 45)(9 107 145 46)(10 108 146 47)(11 109 147 48)(12 110 141 49)(13 111 142 43)(14 112 143 44)(22 60 158 121)(23 61 159 122)(24 62 160 123)(25 63 161 124)(26 57 155 125)(27 58 156 126)(28 59 157 120)(29 68 149 99)(30 69 150 100)(31 70 151 101)(32 64 152 102)(33 65 153 103)(34 66 154 104)(35 67 148 105)(36 127 165 73)(37 128 166 74)(38 129 167 75)(39 130 168 76)(40 131 162 77)(41 132 163 71)(42 133 164 72)(78 86 116 93)(79 87 117 94)(80 88 118 95)(81 89 119 96)(82 90 113 97)(83 91 114 98)(84 85 115 92)
(1 47)(2 48)(3 49)(4 43)(5 44)(6 45)(7 46)(8 17)(9 18)(10 19)(11 20)(12 21)(13 15)(14 16)(22 148)(23 149)(24 150)(25 151)(26 152)(27 153)(28 154)(29 159)(30 160)(31 161)(32 155)(33 156)(34 157)(35 158)(36 89)(37 90)(38 91)(39 85)(40 86)(41 87)(42 88)(50 110)(51 111)(52 112)(53 106)(54 107)(55 108)(56 109)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 117)(72 118)(73 119)(74 113)(75 114)(76 115)(77 116)(78 131)(79 132)(80 133)(81 127)(82 128)(83 129)(84 130)(92 168)(93 162)(94 163)(95 164)(96 165)(97 166)(98 167)(99 122)(100 123)(101 124)(102 125)(103 126)(104 120)(105 121)(134 145)(135 146)(136 147)(137 141)(138 142)(139 143)(140 144)
(1 118 35)(2 119 29)(3 113 30)(4 114 31)(5 115 32)(6 116 33)(7 117 34)(8 40 126)(9 41 120)(10 42 121)(11 36 122)(12 37 123)(13 38 124)(14 39 125)(15 91 101)(16 85 102)(17 86 103)(18 87 104)(19 88 105)(20 89 99)(21 90 100)(22 108 133)(23 109 127)(24 110 128)(25 111 129)(26 112 130)(27 106 131)(28 107 132)(43 75 161)(44 76 155)(45 77 156)(46 71 157)(47 72 158)(48 73 159)(49 74 160)(50 82 150)(51 83 151)(52 84 152)(53 78 153)(54 79 154)(55 80 148)(56 81 149)(57 143 168)(58 144 162)(59 145 163)(60 146 164)(61 147 165)(62 141 166)(63 142 167)(64 139 92)(65 140 93)(66 134 94)(67 135 95)(68 136 96)(69 137 97)(70 138 98)
(8 106)(9 107)(10 108)(11 109)(12 110)(13 111)(14 112)(15 138)(16 139)(17 140)(18 134)(19 135)(20 136)(21 137)(22 42)(23 36)(24 37)(25 38)(26 39)(27 40)(28 41)(29 119)(30 113)(31 114)(32 115)(33 116)(34 117)(35 118)(43 142)(44 143)(45 144)(46 145)(47 146)(48 147)(49 141)(57 76)(58 77)(59 71)(60 72)(61 73)(62 74)(63 75)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(78 153)(79 154)(80 148)(81 149)(82 150)(83 151)(84 152)(92 102)(93 103)(94 104)(95 105)(96 99)(97 100)(98 101)(120 132)(121 133)(122 127)(123 128)(124 129)(125 130)(126 131)(155 168)(156 162)(157 163)(158 164)(159 165)(160 166)(161 167)

G:=sub<Sym(168)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,135,55,19)(2,136,56,20)(3,137,50,21)(4,138,51,15)(5,139,52,16)(6,140,53,17)(7,134,54,18)(8,106,144,45)(9,107,145,46)(10,108,146,47)(11,109,147,48)(12,110,141,49)(13,111,142,43)(14,112,143,44)(22,60,158,121)(23,61,159,122)(24,62,160,123)(25,63,161,124)(26,57,155,125)(27,58,156,126)(28,59,157,120)(29,68,149,99)(30,69,150,100)(31,70,151,101)(32,64,152,102)(33,65,153,103)(34,66,154,104)(35,67,148,105)(36,127,165,73)(37,128,166,74)(38,129,167,75)(39,130,168,76)(40,131,162,77)(41,132,163,71)(42,133,164,72)(78,86,116,93)(79,87,117,94)(80,88,118,95)(81,89,119,96)(82,90,113,97)(83,91,114,98)(84,85,115,92), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,17)(9,18)(10,19)(11,20)(12,21)(13,15)(14,16)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,159)(30,160)(31,161)(32,155)(33,156)(34,157)(35,158)(36,89)(37,90)(38,91)(39,85)(40,86)(41,87)(42,88)(50,110)(51,111)(52,112)(53,106)(54,107)(55,108)(56,109)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,117)(72,118)(73,119)(74,113)(75,114)(76,115)(77,116)(78,131)(79,132)(80,133)(81,127)(82,128)(83,129)(84,130)(92,168)(93,162)(94,163)(95,164)(96,165)(97,166)(98,167)(99,122)(100,123)(101,124)(102,125)(103,126)(104,120)(105,121)(134,145)(135,146)(136,147)(137,141)(138,142)(139,143)(140,144), (1,118,35)(2,119,29)(3,113,30)(4,114,31)(5,115,32)(6,116,33)(7,117,34)(8,40,126)(9,41,120)(10,42,121)(11,36,122)(12,37,123)(13,38,124)(14,39,125)(15,91,101)(16,85,102)(17,86,103)(18,87,104)(19,88,105)(20,89,99)(21,90,100)(22,108,133)(23,109,127)(24,110,128)(25,111,129)(26,112,130)(27,106,131)(28,107,132)(43,75,161)(44,76,155)(45,77,156)(46,71,157)(47,72,158)(48,73,159)(49,74,160)(50,82,150)(51,83,151)(52,84,152)(53,78,153)(54,79,154)(55,80,148)(56,81,149)(57,143,168)(58,144,162)(59,145,163)(60,146,164)(61,147,165)(62,141,166)(63,142,167)(64,139,92)(65,140,93)(66,134,94)(67,135,95)(68,136,96)(69,137,97)(70,138,98), (8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,138)(16,139)(17,140)(18,134)(19,135)(20,136)(21,137)(22,42)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,119)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,141)(57,76)(58,77)(59,71)(60,72)(61,73)(62,74)(63,75)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(78,153)(79,154)(80,148)(81,149)(82,150)(83,151)(84,152)(92,102)(93,103)(94,104)(95,105)(96,99)(97,100)(98,101)(120,132)(121,133)(122,127)(123,128)(124,129)(125,130)(126,131)(155,168)(156,162)(157,163)(158,164)(159,165)(160,166)(161,167)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,135,55,19)(2,136,56,20)(3,137,50,21)(4,138,51,15)(5,139,52,16)(6,140,53,17)(7,134,54,18)(8,106,144,45)(9,107,145,46)(10,108,146,47)(11,109,147,48)(12,110,141,49)(13,111,142,43)(14,112,143,44)(22,60,158,121)(23,61,159,122)(24,62,160,123)(25,63,161,124)(26,57,155,125)(27,58,156,126)(28,59,157,120)(29,68,149,99)(30,69,150,100)(31,70,151,101)(32,64,152,102)(33,65,153,103)(34,66,154,104)(35,67,148,105)(36,127,165,73)(37,128,166,74)(38,129,167,75)(39,130,168,76)(40,131,162,77)(41,132,163,71)(42,133,164,72)(78,86,116,93)(79,87,117,94)(80,88,118,95)(81,89,119,96)(82,90,113,97)(83,91,114,98)(84,85,115,92), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,17)(9,18)(10,19)(11,20)(12,21)(13,15)(14,16)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,159)(30,160)(31,161)(32,155)(33,156)(34,157)(35,158)(36,89)(37,90)(38,91)(39,85)(40,86)(41,87)(42,88)(50,110)(51,111)(52,112)(53,106)(54,107)(55,108)(56,109)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,117)(72,118)(73,119)(74,113)(75,114)(76,115)(77,116)(78,131)(79,132)(80,133)(81,127)(82,128)(83,129)(84,130)(92,168)(93,162)(94,163)(95,164)(96,165)(97,166)(98,167)(99,122)(100,123)(101,124)(102,125)(103,126)(104,120)(105,121)(134,145)(135,146)(136,147)(137,141)(138,142)(139,143)(140,144), (1,118,35)(2,119,29)(3,113,30)(4,114,31)(5,115,32)(6,116,33)(7,117,34)(8,40,126)(9,41,120)(10,42,121)(11,36,122)(12,37,123)(13,38,124)(14,39,125)(15,91,101)(16,85,102)(17,86,103)(18,87,104)(19,88,105)(20,89,99)(21,90,100)(22,108,133)(23,109,127)(24,110,128)(25,111,129)(26,112,130)(27,106,131)(28,107,132)(43,75,161)(44,76,155)(45,77,156)(46,71,157)(47,72,158)(48,73,159)(49,74,160)(50,82,150)(51,83,151)(52,84,152)(53,78,153)(54,79,154)(55,80,148)(56,81,149)(57,143,168)(58,144,162)(59,145,163)(60,146,164)(61,147,165)(62,141,166)(63,142,167)(64,139,92)(65,140,93)(66,134,94)(67,135,95)(68,136,96)(69,137,97)(70,138,98), (8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,138)(16,139)(17,140)(18,134)(19,135)(20,136)(21,137)(22,42)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,119)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,141)(57,76)(58,77)(59,71)(60,72)(61,73)(62,74)(63,75)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(78,153)(79,154)(80,148)(81,149)(82,150)(83,151)(84,152)(92,102)(93,103)(94,104)(95,105)(96,99)(97,100)(98,101)(120,132)(121,133)(122,127)(123,128)(124,129)(125,130)(126,131)(155,168)(156,162)(157,163)(158,164)(159,165)(160,166)(161,167) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168)], [(1,135,55,19),(2,136,56,20),(3,137,50,21),(4,138,51,15),(5,139,52,16),(6,140,53,17),(7,134,54,18),(8,106,144,45),(9,107,145,46),(10,108,146,47),(11,109,147,48),(12,110,141,49),(13,111,142,43),(14,112,143,44),(22,60,158,121),(23,61,159,122),(24,62,160,123),(25,63,161,124),(26,57,155,125),(27,58,156,126),(28,59,157,120),(29,68,149,99),(30,69,150,100),(31,70,151,101),(32,64,152,102),(33,65,153,103),(34,66,154,104),(35,67,148,105),(36,127,165,73),(37,128,166,74),(38,129,167,75),(39,130,168,76),(40,131,162,77),(41,132,163,71),(42,133,164,72),(78,86,116,93),(79,87,117,94),(80,88,118,95),(81,89,119,96),(82,90,113,97),(83,91,114,98),(84,85,115,92)], [(1,47),(2,48),(3,49),(4,43),(5,44),(6,45),(7,46),(8,17),(9,18),(10,19),(11,20),(12,21),(13,15),(14,16),(22,148),(23,149),(24,150),(25,151),(26,152),(27,153),(28,154),(29,159),(30,160),(31,161),(32,155),(33,156),(34,157),(35,158),(36,89),(37,90),(38,91),(39,85),(40,86),(41,87),(42,88),(50,110),(51,111),(52,112),(53,106),(54,107),(55,108),(56,109),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,117),(72,118),(73,119),(74,113),(75,114),(76,115),(77,116),(78,131),(79,132),(80,133),(81,127),(82,128),(83,129),(84,130),(92,168),(93,162),(94,163),(95,164),(96,165),(97,166),(98,167),(99,122),(100,123),(101,124),(102,125),(103,126),(104,120),(105,121),(134,145),(135,146),(136,147),(137,141),(138,142),(139,143),(140,144)], [(1,118,35),(2,119,29),(3,113,30),(4,114,31),(5,115,32),(6,116,33),(7,117,34),(8,40,126),(9,41,120),(10,42,121),(11,36,122),(12,37,123),(13,38,124),(14,39,125),(15,91,101),(16,85,102),(17,86,103),(18,87,104),(19,88,105),(20,89,99),(21,90,100),(22,108,133),(23,109,127),(24,110,128),(25,111,129),(26,112,130),(27,106,131),(28,107,132),(43,75,161),(44,76,155),(45,77,156),(46,71,157),(47,72,158),(48,73,159),(49,74,160),(50,82,150),(51,83,151),(52,84,152),(53,78,153),(54,79,154),(55,80,148),(56,81,149),(57,143,168),(58,144,162),(59,145,163),(60,146,164),(61,147,165),(62,141,166),(63,142,167),(64,139,92),(65,140,93),(66,134,94),(67,135,95),(68,136,96),(69,137,97),(70,138,98)], [(8,106),(9,107),(10,108),(11,109),(12,110),(13,111),(14,112),(15,138),(16,139),(17,140),(18,134),(19,135),(20,136),(21,137),(22,42),(23,36),(24,37),(25,38),(26,39),(27,40),(28,41),(29,119),(30,113),(31,114),(32,115),(33,116),(34,117),(35,118),(43,142),(44,143),(45,144),(46,145),(47,146),(48,147),(49,141),(57,76),(58,77),(59,71),(60,72),(61,73),(62,74),(63,75),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(78,153),(79,154),(80,148),(81,149),(82,150),(83,151),(84,152),(92,102),(93,103),(94,104),(95,105),(96,99),(97,100),(98,101),(120,132),(121,133),(122,127),(123,128),(124,129),(125,130),(126,131),(155,168),(156,162),(157,163),(158,164),(159,165),(160,166),(161,167)]])

84 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C7A···7F8A8B 12 14A···14F14G···14L14M···14R21A···21F28A···28F42A···42F42G···42R56A···56L84A···84F
order1222346667···7881214···1414···1414···1421···2128···2842···4242···4256···5684···84
size11412222441···16641···14···412···122···22···22···24···46···64···4

84 irreducible representations

dim11111111222222222244
type+++++++++
imageC1C2C2C2C7C14C14C14S3D4D6D8C3⋊D4S3×C7C7×D4S3×C14C7×D8C7×C3⋊D4D4⋊S3C7×D4⋊S3
kernelC7×D4⋊S3C7×C3⋊C8C7×D12D4×C21D4⋊S3C3⋊C8D12C3×D4C7×D4C42C28C21C14D4C6C4C3C2C7C1
# reps1111666611122666121216

Matrix representation of C7×D4⋊S3 in GL4(𝔽337) generated by

79000
07900
00790
00079
,
336000
033600
001335
001336
,
1395900
27819800
000311
003240
,
336100
336000
0010
0001
,
133600
033600
0010
001336
G:=sub<GL(4,GF(337))| [79,0,0,0,0,79,0,0,0,0,79,0,0,0,0,79],[336,0,0,0,0,336,0,0,0,0,1,1,0,0,335,336],[139,278,0,0,59,198,0,0,0,0,0,324,0,0,311,0],[336,336,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,336,336,0,0,0,0,1,1,0,0,0,336] >;

C7×D4⋊S3 in GAP, Magma, Sage, TeX

C_7\times D_4\rtimes S_3
% in TeX

G:=Group("C7xD4:S3");
// GroupNames label

G:=SmallGroup(336,85);
// by ID

G=gap.SmallGroup(336,85);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-3,361,2019,1017,69,8069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C7×D4⋊S3 in TeX

׿
×
𝔽