# Extensions 1→N→G→Q→1 with N=C32 and Q=C3×Dic3

Direct product G=N×Q with N=C32 and Q=C3×Dic3
dρLabelID
Dic3×C33108Dic3xC3^3324,155

Semidirect products G=N:Q with N=C32 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C321(C3×Dic3) = C3×C32⋊C12φ: C3×Dic3/C6S3 ⊆ Aut C32366C3^2:1(C3xDic3)324,92
C322(C3×Dic3) = C3×He33C4φ: C3×Dic3/C6S3 ⊆ Aut C32108C3^2:2(C3xDic3)324,99
C323(C3×Dic3) = C334C12φ: C3×Dic3/C6C6 ⊆ Aut C32108C3^2:3(C3xDic3)324,98
C324(C3×Dic3) = C3×C33⋊C4φ: C3×Dic3/C32C4 ⊆ Aut C32124C3^2:4(C3xDic3)324,162
C325(C3×Dic3) = Dic3×He3φ: C3×Dic3/Dic3C3 ⊆ Aut C32366C3^2:5(C3xDic3)324,93
C326(C3×Dic3) = C32×C3⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C3236C3^2:6(C3xDic3)324,156
C327(C3×Dic3) = C3×C335C4φ: C3×Dic3/C3×C6C2 ⊆ Aut C32108C3^2:7(C3xDic3)324,157

Non-split extensions G=N.Q with N=C32 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C32.1(C3×Dic3) = He3⋊C12φ: C3×Dic3/C6S3 ⊆ Aut C32363C3^2.1(C3xDic3)324,13
C32.2(C3×Dic3) = He3.C12φ: C3×Dic3/C6S3 ⊆ Aut C321083C3^2.2(C3xDic3)324,15
C32.3(C3×Dic3) = He3.2C12φ: C3×Dic3/C6S3 ⊆ Aut C321083C3^2.3(C3xDic3)324,17
C32.4(C3×Dic3) = C3×C9⋊C12φ: C3×Dic3/C6S3 ⊆ Aut C32366C3^2.4(C3xDic3)324,94
C32.5(C3×Dic3) = He3.5C12φ: C3×Dic3/C6S3 ⊆ Aut C321083C3^2.5(C3xDic3)324,102
C32.6(C3×Dic3) = C33⋊C12φ: C3×Dic3/C6C6 ⊆ Aut C32366-C3^2.6(C3xDic3)324,14
C32.7(C3×Dic3) = He3.Dic3φ: C3×Dic3/C6C6 ⊆ Aut C321086-C3^2.7(C3xDic3)324,16
C32.8(C3×Dic3) = He3.2Dic3φ: C3×Dic3/C6C6 ⊆ Aut C321086-C3^2.8(C3xDic3)324,18
C32.9(C3×Dic3) = He3.4Dic3φ: C3×Dic3/C6C6 ⊆ Aut C321086-C3^2.9(C3xDic3)324,101
C32.10(C3×Dic3) = Dic3×3- 1+2φ: C3×Dic3/Dic3C3 ⊆ Aut C32366C3^2.10(C3xDic3)324,95
C32.11(C3×Dic3) = C9×Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C32362C3^2.11(C3xDic3)324,6
C32.12(C3×Dic3) = C32⋊C36φ: C3×Dic3/C3×C6C2 ⊆ Aut C32366C3^2.12(C3xDic3)324,7
C32.13(C3×Dic3) = C32⋊Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C32108C3^2.13(C3xDic3)324,8
C32.14(C3×Dic3) = C9⋊C36φ: C3×Dic3/C3×C6C2 ⊆ Aut C32366C3^2.14(C3xDic3)324,9
C32.15(C3×Dic3) = C32×Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C32108C3^2.15(C3xDic3)324,90
C32.16(C3×Dic3) = C3×C9⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C32108C3^2.16(C3xDic3)324,96
C32.17(C3×Dic3) = C9×C3⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C32108C3^2.17(C3xDic3)324,97
C32.18(C3×Dic3) = C33.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C32108C3^2.18(C3xDic3)324,100
C32.19(C3×Dic3) = Dic3×C3×C9central extension (φ=1)108C3^2.19(C3xDic3)324,91

׿
×
𝔽