Extensions 1→N→G→Q→1 with N=C2×C28 and Q=S3

Direct product G=N×Q with N=C2×C28 and Q=S3
dρLabelID
S3×C2×C28168S3xC2xC28336,185

Semidirect products G=N:Q with N=C2×C28 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C28)⋊1S3 = C7×D6⋊C4φ: S3/C3C2 ⊆ Aut C2×C28168(C2xC28):1S3336,84
(C2×C28)⋊2S3 = C2.D84φ: S3/C3C2 ⊆ Aut C2×C28168(C2xC28):2S3336,100
(C2×C28)⋊3S3 = C2×D84φ: S3/C3C2 ⊆ Aut C2×C28168(C2xC28):3S3336,196
(C2×C28)⋊4S3 = D8411C2φ: S3/C3C2 ⊆ Aut C2×C281682(C2xC28):4S3336,197
(C2×C28)⋊5S3 = C2×C4×D21φ: S3/C3C2 ⊆ Aut C2×C28168(C2xC28):5S3336,195
(C2×C28)⋊6S3 = C14×D12φ: S3/C3C2 ⊆ Aut C2×C28168(C2xC28):6S3336,186
(C2×C28)⋊7S3 = C7×C4○D12φ: S3/C3C2 ⊆ Aut C2×C281682(C2xC28):7S3336,187

Non-split extensions G=N.Q with N=C2×C28 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C28).1S3 = C7×Dic3⋊C4φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).1S3336,82
(C2×C28).2S3 = C42.4Q8φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).2S3336,98
(C2×C28).3S3 = C84⋊C4φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).3S3336,99
(C2×C28).4S3 = C2×Dic42φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).4S3336,194
(C2×C28).5S3 = C84.C4φ: S3/C3C2 ⊆ Aut C2×C281682(C2xC28).5S3336,96
(C2×C28).6S3 = C2×C21⋊C8φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).6S3336,95
(C2×C28).7S3 = C4×Dic21φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).7S3336,97
(C2×C28).8S3 = C7×C4.Dic3φ: S3/C3C2 ⊆ Aut C2×C281682(C2xC28).8S3336,80
(C2×C28).9S3 = C7×C4⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).9S3336,83
(C2×C28).10S3 = C14×Dic6φ: S3/C3C2 ⊆ Aut C2×C28336(C2xC28).10S3336,184
(C2×C28).11S3 = C14×C3⋊C8central extension (φ=1)336(C2xC28).11S3336,79
(C2×C28).12S3 = Dic3×C28central extension (φ=1)336(C2xC28).12S3336,81

׿
×
𝔽