Extensions 1→N→G→Q→1 with N=C21 and Q=C3×S3

Direct product G=N×Q with N=C21 and Q=C3×S3
dρLabelID
S3×C3×C21126S3xC3xC21378,54

Semidirect products G=N:Q with N=C21 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C211(C3×S3) = C324F7φ: C3×S3/C3C6 ⊆ Aut C2163C21:1(C3xS3)378,51
C212(C3×S3) = C3×C3⋊F7φ: C3×S3/C3C6 ⊆ Aut C21426C21:2(C3xS3)378,49
C213(C3×S3) = C3⋊S3×C7⋊C3φ: C3×S3/C3C6 ⊆ Aut C2163C21:3(C3xS3)378,50
C214(C3×S3) = C3×S3×C7⋊C3φ: C3×S3/S3C3 ⊆ Aut C21426C21:4(C3xS3)378,48
C215(C3×S3) = C3×C3⋊D21φ: C3×S3/C32C2 ⊆ Aut C21126C21:5(C3xS3)378,57
C216(C3×S3) = C32×D21φ: C3×S3/C32C2 ⊆ Aut C21126C21:6(C3xS3)378,55
C217(C3×S3) = C3⋊S3×C21φ: C3×S3/C32C2 ⊆ Aut C21126C21:7(C3xS3)378,56

Non-split extensions G=N.Q with N=C21 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C21.1(C3×S3) = C9⋊F7φ: C3×S3/C3C6 ⊆ Aut C21636+C21.1(C3xS3)378,18
C21.2(C3×S3) = C92F7φ: C3×S3/C3C6 ⊆ Aut C21636+C21.2(C3xS3)378,19
C21.3(C3×S3) = C95F7φ: C3×S3/C3C6 ⊆ Aut C21636+C21.3(C3xS3)378,20
C21.4(C3×S3) = C32⋊F7φ: C3×S3/C3C6 ⊆ Aut C21636+C21.4(C3xS3)378,22
C21.5(C3×S3) = D21⋊C9φ: C3×S3/C3C6 ⊆ Aut C211266C21.5(C3xS3)378,21
C21.6(C3×S3) = C63⋊C6φ: C3×S3/C3C6 ⊆ Aut C21636C21.6(C3xS3)378,13
C21.7(C3×S3) = C636C6φ: C3×S3/C3C6 ⊆ Aut C21636C21.7(C3xS3)378,14
C21.8(C3×S3) = D9×C7⋊C3φ: C3×S3/C3C6 ⊆ Aut C21636C21.8(C3xS3)378,15
C21.9(C3×S3) = C7⋊He3⋊C2φ: C3×S3/C3C6 ⊆ Aut C21636C21.9(C3xS3)378,17
C21.10(C3×S3) = S3×C7⋊C9φ: C3×S3/S3C3 ⊆ Aut C211266C21.10(C3xS3)378,16
C21.11(C3×S3) = C3×D63φ: C3×S3/C32C2 ⊆ Aut C211262C21.11(C3xS3)378,36
C21.12(C3×S3) = He3⋊D7φ: C3×S3/C32C2 ⊆ Aut C21636+C21.12(C3xS3)378,38
C21.13(C3×S3) = D63⋊C3φ: C3×S3/C32C2 ⊆ Aut C21636+C21.13(C3xS3)378,39
C21.14(C3×S3) = C9×D21φ: C3×S3/C32C2 ⊆ Aut C211262C21.14(C3xS3)378,37
C21.15(C3×S3) = D9×C21φ: C3×S3/C32C2 ⊆ Aut C211262C21.15(C3xS3)378,32
C21.16(C3×S3) = C7×C32⋊C6φ: C3×S3/C32C2 ⊆ Aut C21636C21.16(C3xS3)378,34
C21.17(C3×S3) = C7×C9⋊C6φ: C3×S3/C32C2 ⊆ Aut C21636C21.17(C3xS3)378,35
C21.18(C3×S3) = S3×C63central extension (φ=1)1262C21.18(C3xS3)378,33

׿
×
𝔽