direct product, metacyclic, supersoluble, monomial
Aliases: D7×3- 1+2, C63⋊12C6, C9⋊2(C3×D7), (C9×D7)⋊4C3, C32.(C3×D7), (C3×C21).2C6, C21.15(C3×C6), C3.3(C32×D7), (C32×D7).1C3, (C3×D7).9C32, C7⋊7(C2×3- 1+2), (C7×3- 1+2)⋊3C2, SmallGroup(378,31)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C21 — C63 — C7×3- 1+2 — D7×3- 1+2 |
Generators and relations for D7×3- 1+2
G = < a,b,c,d | a7=b2=c9=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
(1 39 17 24 63 49 33)(2 40 18 25 55 50 34)(3 41 10 26 56 51 35)(4 42 11 27 57 52 36)(5 43 12 19 58 53 28)(6 44 13 20 59 54 29)(7 45 14 21 60 46 30)(8 37 15 22 61 47 31)(9 38 16 23 62 48 32)
(1 33)(2 34)(3 35)(4 36)(5 28)(6 29)(7 30)(8 31)(9 32)(10 56)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 63)(18 55)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 46)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)(28 34 31)(29 32 35)(37 43 40)(38 41 44)(47 53 50)(48 51 54)(55 61 58)(56 59 62)
G:=sub<Sym(63)| (1,39,17,24,63,49,33)(2,40,18,25,55,50,34)(3,41,10,26,56,51,35)(4,42,11,27,57,52,36)(5,43,12,19,58,53,28)(6,44,13,20,59,54,29)(7,45,14,21,60,46,30)(8,37,15,22,61,47,31)(9,38,16,23,62,48,32), (1,33)(2,34)(3,35)(4,36)(5,28)(6,29)(7,30)(8,31)(9,32)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,63)(18,55)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,46), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(47,53,50)(48,51,54)(55,61,58)(56,59,62)>;
G:=Group( (1,39,17,24,63,49,33)(2,40,18,25,55,50,34)(3,41,10,26,56,51,35)(4,42,11,27,57,52,36)(5,43,12,19,58,53,28)(6,44,13,20,59,54,29)(7,45,14,21,60,46,30)(8,37,15,22,61,47,31)(9,38,16,23,62,48,32), (1,33)(2,34)(3,35)(4,36)(5,28)(6,29)(7,30)(8,31)(9,32)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,63)(18,55)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,46), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(47,53,50)(48,51,54)(55,61,58)(56,59,62) );
G=PermutationGroup([[(1,39,17,24,63,49,33),(2,40,18,25,55,50,34),(3,41,10,26,56,51,35),(4,42,11,27,57,52,36),(5,43,12,19,58,53,28),(6,44,13,20,59,54,29),(7,45,14,21,60,46,30),(8,37,15,22,61,47,31),(9,38,16,23,62,48,32)], [(1,33),(2,34),(3,35),(4,36),(5,28),(6,29),(7,30),(8,31),(9,32),(10,56),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,63),(18,55),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,46)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26),(28,34,31),(29,32,35),(37,43,40),(38,41,44),(47,53,50),(48,51,54),(55,61,58),(56,59,62)]])
55 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 7A | 7B | 7C | 9A | ··· | 9F | 18A | ··· | 18F | 21A | ··· | 21F | 21G | ··· | 21L | 63A | ··· | 63R |
order | 1 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 9 | ··· | 9 | 18 | ··· | 18 | 21 | ··· | 21 | 21 | ··· | 21 | 63 | ··· | 63 |
size | 1 | 7 | 1 | 1 | 3 | 3 | 7 | 7 | 21 | 21 | 2 | 2 | 2 | 3 | ··· | 3 | 21 | ··· | 21 | 2 | ··· | 2 | 6 | ··· | 6 | 6 | ··· | 6 |
55 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 |
type | + | + | + | |||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | D7 | C3×D7 | C3×D7 | 3- 1+2 | C2×3- 1+2 | D7×3- 1+2 |
kernel | D7×3- 1+2 | C7×3- 1+2 | C9×D7 | C32×D7 | C63 | C3×C21 | 3- 1+2 | C9 | C32 | D7 | C7 | C1 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 3 | 18 | 6 | 2 | 2 | 6 |
Matrix representation of D7×3- 1+2 ►in GL5(𝔽127)
36 | 1 | 0 | 0 | 0 |
126 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 126 | 0 | 0 |
0 | 0 | 0 | 126 | 0 |
0 | 0 | 0 | 0 | 126 |
19 | 0 | 0 | 0 | 0 |
0 | 19 | 0 | 0 | 0 |
0 | 0 | 1 | 105 | 0 |
0 | 0 | 76 | 126 | 107 |
0 | 0 | 76 | 126 | 0 |
19 | 0 | 0 | 0 | 0 |
0 | 19 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 80 | 19 | 0 |
0 | 0 | 76 | 0 | 107 |
G:=sub<GL(5,GF(127))| [36,126,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,126,0,0,0,0,0,126,0,0,0,0,0,126],[19,0,0,0,0,0,19,0,0,0,0,0,1,76,76,0,0,105,126,126,0,0,0,107,0],[19,0,0,0,0,0,19,0,0,0,0,0,1,80,76,0,0,0,19,0,0,0,0,0,107] >;
D7×3- 1+2 in GAP, Magma, Sage, TeX
D_7\times 3_-^{1+2}
% in TeX
G:=Group("D7xES-(3,1)");
// GroupNames label
G:=SmallGroup(378,31);
// by ID
G=gap.SmallGroup(378,31);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-7,187,57,8104]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^2=c^9=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export