Extensions 1→N→G→Q→1 with N=C30 and Q=Dic3

Direct product G=N×Q with N=C30 and Q=Dic3
dρLabelID
Dic3×C30120Dic3xC30360,98

Semidirect products G=N:Q with N=C30 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C301Dic3 = C2×C323F5φ: Dic3/C3C4 ⊆ Aut C3090C30:1Dic3360,147
C302Dic3 = C6×C3⋊F5φ: Dic3/C3C4 ⊆ Aut C30604C30:2Dic3360,146
C303Dic3 = C2×C3⋊Dic15φ: Dic3/C6C2 ⊆ Aut C30360C30:3Dic3360,113
C304Dic3 = C6×Dic15φ: Dic3/C6C2 ⊆ Aut C30120C30:4Dic3360,103
C305Dic3 = C10×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C30360C30:5Dic3360,108

Non-split extensions G=N.Q with N=C30 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C30.1Dic3 = C45⋊C8φ: Dic3/C3C4 ⊆ Aut C303604C30.1Dic3360,6
C30.2Dic3 = C2×C9⋊F5φ: Dic3/C3C4 ⊆ Aut C30904C30.2Dic3360,44
C30.3Dic3 = C30.Dic3φ: Dic3/C3C4 ⊆ Aut C30360C30.3Dic3360,54
C30.4Dic3 = C3×C15⋊C8φ: Dic3/C3C4 ⊆ Aut C301204C30.4Dic3360,53
C30.5Dic3 = C453C8φ: Dic3/C6C2 ⊆ Aut C303602C30.5Dic3360,3
C30.6Dic3 = C2×Dic45φ: Dic3/C6C2 ⊆ Aut C30360C30.6Dic3360,28
C30.7Dic3 = C60.S3φ: Dic3/C6C2 ⊆ Aut C30360C30.7Dic3360,37
C30.8Dic3 = C3×C153C8φ: Dic3/C6C2 ⊆ Aut C301202C30.8Dic3360,35
C30.9Dic3 = C5×C9⋊C8φ: Dic3/C6C2 ⊆ Aut C303602C30.9Dic3360,1
C30.10Dic3 = C10×Dic9φ: Dic3/C6C2 ⊆ Aut C30360C30.10Dic3360,23
C30.11Dic3 = C5×C324C8φ: Dic3/C6C2 ⊆ Aut C30360C30.11Dic3360,36
C30.12Dic3 = C15×C3⋊C8central extension (φ=1)1202C30.12Dic3360,34

׿
×
𝔽