extension | φ:Q→Aut N | d | ρ | Label | ID |
C30.1Dic3 = C45⋊C8 | φ: Dic3/C3 → C4 ⊆ Aut C30 | 360 | 4 | C30.1Dic3 | 360,6 |
C30.2Dic3 = C2×C9⋊F5 | φ: Dic3/C3 → C4 ⊆ Aut C30 | 90 | 4 | C30.2Dic3 | 360,44 |
C30.3Dic3 = C30.Dic3 | φ: Dic3/C3 → C4 ⊆ Aut C30 | 360 | | C30.3Dic3 | 360,54 |
C30.4Dic3 = C3×C15⋊C8 | φ: Dic3/C3 → C4 ⊆ Aut C30 | 120 | 4 | C30.4Dic3 | 360,53 |
C30.5Dic3 = C45⋊3C8 | φ: Dic3/C6 → C2 ⊆ Aut C30 | 360 | 2 | C30.5Dic3 | 360,3 |
C30.6Dic3 = C2×Dic45 | φ: Dic3/C6 → C2 ⊆ Aut C30 | 360 | | C30.6Dic3 | 360,28 |
C30.7Dic3 = C60.S3 | φ: Dic3/C6 → C2 ⊆ Aut C30 | 360 | | C30.7Dic3 | 360,37 |
C30.8Dic3 = C3×C15⋊3C8 | φ: Dic3/C6 → C2 ⊆ Aut C30 | 120 | 2 | C30.8Dic3 | 360,35 |
C30.9Dic3 = C5×C9⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C30 | 360 | 2 | C30.9Dic3 | 360,1 |
C30.10Dic3 = C10×Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C30 | 360 | | C30.10Dic3 | 360,23 |
C30.11Dic3 = C5×C32⋊4C8 | φ: Dic3/C6 → C2 ⊆ Aut C30 | 360 | | C30.11Dic3 | 360,36 |
C30.12Dic3 = C15×C3⋊C8 | central extension (φ=1) | 120 | 2 | C30.12Dic3 | 360,34 |