direct product, metacyclic, supersoluble, monomial, A-group, 3-hyperelementary
Aliases: C18×C7⋊C3, C63⋊13C6, C126⋊1C3, C42.1C32, C7⋊C9⋊9C6, C14⋊1(C3×C9), C7⋊3(C3×C18), C21.7(C3×C6), (C2×C7⋊C9)⋊4C3, C6.1(C3×C7⋊C3), C3.1(C6×C7⋊C3), (C3×C7⋊C3).6C6, (C6×C7⋊C3).3C3, SmallGroup(378,23)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C7 — C21 — C63 — C9×C7⋊C3 — C18×C7⋊C3 |
| C7 — C18×C7⋊C3 |
Generators and relations for C18×C7⋊C3
G = < a,b,c | a18=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 126 53 25 83 99 69)(2 109 54 26 84 100 70)(3 110 37 27 85 101 71)(4 111 38 28 86 102 72)(5 112 39 29 87 103 55)(6 113 40 30 88 104 56)(7 114 41 31 89 105 57)(8 115 42 32 90 106 58)(9 116 43 33 73 107 59)(10 117 44 34 74 108 60)(11 118 45 35 75 91 61)(12 119 46 36 76 92 62)(13 120 47 19 77 93 63)(14 121 48 20 78 94 64)(15 122 49 21 79 95 65)(16 123 50 22 80 96 66)(17 124 51 23 81 97 67)(18 125 52 24 82 98 68)
(19 63 93)(20 64 94)(21 65 95)(22 66 96)(23 67 97)(24 68 98)(25 69 99)(26 70 100)(27 71 101)(28 72 102)(29 55 103)(30 56 104)(31 57 105)(32 58 106)(33 59 107)(34 60 108)(35 61 91)(36 62 92)(37 85 110)(38 86 111)(39 87 112)(40 88 113)(41 89 114)(42 90 115)(43 73 116)(44 74 117)(45 75 118)(46 76 119)(47 77 120)(48 78 121)(49 79 122)(50 80 123)(51 81 124)(52 82 125)(53 83 126)(54 84 109)
G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,126,53,25,83,99,69)(2,109,54,26,84,100,70)(3,110,37,27,85,101,71)(4,111,38,28,86,102,72)(5,112,39,29,87,103,55)(6,113,40,30,88,104,56)(7,114,41,31,89,105,57)(8,115,42,32,90,106,58)(9,116,43,33,73,107,59)(10,117,44,34,74,108,60)(11,118,45,35,75,91,61)(12,119,46,36,76,92,62)(13,120,47,19,77,93,63)(14,121,48,20,78,94,64)(15,122,49,21,79,95,65)(16,123,50,22,80,96,66)(17,124,51,23,81,97,67)(18,125,52,24,82,98,68), (19,63,93)(20,64,94)(21,65,95)(22,66,96)(23,67,97)(24,68,98)(25,69,99)(26,70,100)(27,71,101)(28,72,102)(29,55,103)(30,56,104)(31,57,105)(32,58,106)(33,59,107)(34,60,108)(35,61,91)(36,62,92)(37,85,110)(38,86,111)(39,87,112)(40,88,113)(41,89,114)(42,90,115)(43,73,116)(44,74,117)(45,75,118)(46,76,119)(47,77,120)(48,78,121)(49,79,122)(50,80,123)(51,81,124)(52,82,125)(53,83,126)(54,84,109)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,126,53,25,83,99,69)(2,109,54,26,84,100,70)(3,110,37,27,85,101,71)(4,111,38,28,86,102,72)(5,112,39,29,87,103,55)(6,113,40,30,88,104,56)(7,114,41,31,89,105,57)(8,115,42,32,90,106,58)(9,116,43,33,73,107,59)(10,117,44,34,74,108,60)(11,118,45,35,75,91,61)(12,119,46,36,76,92,62)(13,120,47,19,77,93,63)(14,121,48,20,78,94,64)(15,122,49,21,79,95,65)(16,123,50,22,80,96,66)(17,124,51,23,81,97,67)(18,125,52,24,82,98,68), (19,63,93)(20,64,94)(21,65,95)(22,66,96)(23,67,97)(24,68,98)(25,69,99)(26,70,100)(27,71,101)(28,72,102)(29,55,103)(30,56,104)(31,57,105)(32,58,106)(33,59,107)(34,60,108)(35,61,91)(36,62,92)(37,85,110)(38,86,111)(39,87,112)(40,88,113)(41,89,114)(42,90,115)(43,73,116)(44,74,117)(45,75,118)(46,76,119)(47,77,120)(48,78,121)(49,79,122)(50,80,123)(51,81,124)(52,82,125)(53,83,126)(54,84,109) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,126,53,25,83,99,69),(2,109,54,26,84,100,70),(3,110,37,27,85,101,71),(4,111,38,28,86,102,72),(5,112,39,29,87,103,55),(6,113,40,30,88,104,56),(7,114,41,31,89,105,57),(8,115,42,32,90,106,58),(9,116,43,33,73,107,59),(10,117,44,34,74,108,60),(11,118,45,35,75,91,61),(12,119,46,36,76,92,62),(13,120,47,19,77,93,63),(14,121,48,20,78,94,64),(15,122,49,21,79,95,65),(16,123,50,22,80,96,66),(17,124,51,23,81,97,67),(18,125,52,24,82,98,68)], [(19,63,93),(20,64,94),(21,65,95),(22,66,96),(23,67,97),(24,68,98),(25,69,99),(26,70,100),(27,71,101),(28,72,102),(29,55,103),(30,56,104),(31,57,105),(32,58,106),(33,59,107),(34,60,108),(35,61,91),(36,62,92),(37,85,110),(38,86,111),(39,87,112),(40,88,113),(41,89,114),(42,90,115),(43,73,116),(44,74,117),(45,75,118),(46,76,119),(47,77,120),(48,78,121),(49,79,122),(50,80,123),(51,81,124),(52,82,125),(53,83,126),(54,84,109)]])
90 conjugacy classes
| class | 1 | 2 | 3A | 3B | 3C | ··· | 3H | 6A | 6B | 6C | ··· | 6H | 7A | 7B | 9A | ··· | 9F | 9G | ··· | 9R | 14A | 14B | 18A | ··· | 18F | 18G | ··· | 18R | 21A | 21B | 21C | 21D | 42A | 42B | 42C | 42D | 63A | ··· | 63L | 126A | ··· | 126L |
| order | 1 | 2 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 6 | ··· | 6 | 7 | 7 | 9 | ··· | 9 | 9 | ··· | 9 | 14 | 14 | 18 | ··· | 18 | 18 | ··· | 18 | 21 | 21 | 21 | 21 | 42 | 42 | 42 | 42 | 63 | ··· | 63 | 126 | ··· | 126 |
| size | 1 | 1 | 1 | 1 | 7 | ··· | 7 | 1 | 1 | 7 | ··· | 7 | 3 | 3 | 1 | ··· | 1 | 7 | ··· | 7 | 3 | 3 | 1 | ··· | 1 | 7 | ··· | 7 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 3 | ··· | 3 |
90 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
| type | + | + | ||||||||||||||
| image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | C9 | C18 | C7⋊C3 | C2×C7⋊C3 | C3×C7⋊C3 | C6×C7⋊C3 | C9×C7⋊C3 | C18×C7⋊C3 |
| kernel | C18×C7⋊C3 | C9×C7⋊C3 | C2×C7⋊C9 | C126 | C6×C7⋊C3 | C7⋊C9 | C63 | C3×C7⋊C3 | C2×C7⋊C3 | C7⋊C3 | C18 | C9 | C6 | C3 | C2 | C1 |
| # reps | 1 | 1 | 4 | 2 | 2 | 4 | 2 | 2 | 18 | 18 | 2 | 2 | 4 | 4 | 12 | 12 |
Matrix representation of C18×C7⋊C3 ►in GL3(𝔽127) generated by
| 105 | 0 | 0 |
| 0 | 105 | 0 |
| 0 | 0 | 105 |
| 126 | 126 | 104 |
| 1 | 0 | 1 |
| 0 | 1 | 23 |
| 0 | 105 | 1 |
| 1 | 1 | 23 |
| 0 | 23 | 126 |
G:=sub<GL(3,GF(127))| [105,0,0,0,105,0,0,0,105],[126,1,0,126,0,1,104,1,23],[0,1,0,105,1,23,1,23,126] >;
C18×C7⋊C3 in GAP, Magma, Sage, TeX
C_{18}\times C_7\rtimes C_3 % in TeX
G:=Group("C18xC7:C3"); // GroupNames label
G:=SmallGroup(378,23);
// by ID
G=gap.SmallGroup(378,23);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-7,57,1359]);
// Polycyclic
G:=Group<a,b,c|a^18=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations
Export