Copied to
clipboard

G = C2×C633C3order 378 = 2·33·7

Direct product of C2 and C633C3

direct product, metacyclic, supersoluble, monomial, 3-hyperelementary

Aliases: C2×C633C3, C6315C6, C1263C3, C42.3C32, C1423- 1+2, C7⋊C95C6, C182(C7⋊C3), C21.9(C3×C6), C75(C2×3- 1+2), C94(C2×C7⋊C3), (C2×C7⋊C9)⋊2C3, C3.4(C6×C7⋊C3), C6.3(C3×C7⋊C3), (C6×C7⋊C3).2C3, (C3×C7⋊C3).4C6, SmallGroup(378,25)

Series: Derived Chief Lower central Upper central

C1C21 — C2×C633C3
C1C7C21C63C633C3 — C2×C633C3
C7C21 — C2×C633C3
C1C6C18

Generators and relations for C2×C633C3
 G = < a,b,c | a2=b63=c3=1, ab=ba, ac=ca, cbc-1=b4 >

21C3
21C6
7C32
7C9
7C9
3C7⋊C3
7C18
7C3×C6
7C18
73- 1+2
3C2×C7⋊C3
7C2×3- 1+2

Smallest permutation representation of C2×C633C3
On 126 points
Generators in S126
(1 69)(2 70)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 79)(12 80)(13 81)(14 82)(15 83)(16 84)(17 85)(18 86)(19 87)(20 88)(21 89)(22 90)(23 91)(24 92)(25 93)(26 94)(27 95)(28 96)(29 97)(30 98)(31 99)(32 100)(33 101)(34 102)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(49 117)(50 118)(51 119)(52 120)(53 121)(54 122)(55 123)(56 124)(57 125)(58 126)(59 64)(60 65)(61 66)(62 67)(63 68)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(2 17 5)(3 33 9)(4 49 13)(6 18 21)(7 34 25)(8 50 29)(10 19 37)(11 35 41)(12 51 45)(14 20 53)(15 36 57)(16 52 61)(23 38 26)(24 54 30)(27 39 42)(28 55 46)(31 40 58)(32 56 62)(44 59 47)(48 60 63)(64 115 112)(65 68 116)(66 84 120)(67 100 124)(70 85 73)(71 101 77)(72 117 81)(74 86 89)(75 102 93)(76 118 97)(78 87 105)(79 103 109)(80 119 113)(82 88 121)(83 104 125)(91 106 94)(92 122 98)(95 107 110)(96 123 114)(99 108 126)

G:=sub<Sym(126)| (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,64)(60,65)(61,66)(62,67)(63,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (2,17,5)(3,33,9)(4,49,13)(6,18,21)(7,34,25)(8,50,29)(10,19,37)(11,35,41)(12,51,45)(14,20,53)(15,36,57)(16,52,61)(23,38,26)(24,54,30)(27,39,42)(28,55,46)(31,40,58)(32,56,62)(44,59,47)(48,60,63)(64,115,112)(65,68,116)(66,84,120)(67,100,124)(70,85,73)(71,101,77)(72,117,81)(74,86,89)(75,102,93)(76,118,97)(78,87,105)(79,103,109)(80,119,113)(82,88,121)(83,104,125)(91,106,94)(92,122,98)(95,107,110)(96,123,114)(99,108,126)>;

G:=Group( (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,64)(60,65)(61,66)(62,67)(63,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (2,17,5)(3,33,9)(4,49,13)(6,18,21)(7,34,25)(8,50,29)(10,19,37)(11,35,41)(12,51,45)(14,20,53)(15,36,57)(16,52,61)(23,38,26)(24,54,30)(27,39,42)(28,55,46)(31,40,58)(32,56,62)(44,59,47)(48,60,63)(64,115,112)(65,68,116)(66,84,120)(67,100,124)(70,85,73)(71,101,77)(72,117,81)(74,86,89)(75,102,93)(76,118,97)(78,87,105)(79,103,109)(80,119,113)(82,88,121)(83,104,125)(91,106,94)(92,122,98)(95,107,110)(96,123,114)(99,108,126) );

G=PermutationGroup([[(1,69),(2,70),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,79),(12,80),(13,81),(14,82),(15,83),(16,84),(17,85),(18,86),(19,87),(20,88),(21,89),(22,90),(23,91),(24,92),(25,93),(26,94),(27,95),(28,96),(29,97),(30,98),(31,99),(32,100),(33,101),(34,102),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(49,117),(50,118),(51,119),(52,120),(53,121),(54,122),(55,123),(56,124),(57,125),(58,126),(59,64),(60,65),(61,66),(62,67),(63,68)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(2,17,5),(3,33,9),(4,49,13),(6,18,21),(7,34,25),(8,50,29),(10,19,37),(11,35,41),(12,51,45),(14,20,53),(15,36,57),(16,52,61),(23,38,26),(24,54,30),(27,39,42),(28,55,46),(31,40,58),(32,56,62),(44,59,47),(48,60,63),(64,115,112),(65,68,116),(66,84,120),(67,100,124),(70,85,73),(71,101,77),(72,117,81),(74,86,89),(75,102,93),(76,118,97),(78,87,105),(79,103,109),(80,119,113),(82,88,121),(83,104,125),(91,106,94),(92,122,98),(95,107,110),(96,123,114),(99,108,126)]])

58 conjugacy classes

class 1  2 3A3B3C3D6A6B6C6D7A7B9A9B9C9D9E9F14A14B18A18B18C18D18E18F21A21B21C21D42A42B42C42D63A···63L126A···126L
order1233336666779999991414181818181818212121214242424263···63126···126
size11112121112121333321212121333321212121333333333···33···3

58 irreducible representations

dim1111111133333333
type++
imageC1C2C3C3C3C6C6C6C7⋊C33- 1+2C2×C7⋊C3C2×3- 1+2C3×C7⋊C3C6×C7⋊C3C633C3C2×C633C3
kernelC2×C633C3C633C3C2×C7⋊C9C126C6×C7⋊C3C7⋊C9C63C3×C7⋊C3C18C14C9C7C6C3C2C1
# reps114224222222441212

Matrix representation of C2×C633C3 in GL3(𝔽127) generated by

12600
01260
00126
,
53132
2994
94936
,
100
104126126
010
G:=sub<GL(3,GF(127))| [126,0,0,0,126,0,0,0,126],[53,2,94,13,9,93,2,94,6],[1,104,0,0,126,1,0,126,0] >;

C2×C633C3 in GAP, Magma, Sage, TeX

C_2\times C_{63}\rtimes_3C_3
% in TeX

G:=Group("C2xC63:3C3");
// GroupNames label

G:=SmallGroup(378,25);
// by ID

G=gap.SmallGroup(378,25);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,187,102,1359]);
// Polycyclic

G:=Group<a,b,c|a^2=b^63=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C2×C633C3 in TeX

׿
×
𝔽