Copied to
clipboard

G = C2×C63⋊C3order 378 = 2·33·7

Direct product of C2 and C63⋊C3

direct product, metacyclic, supersoluble, monomial, 3-hyperelementary

Aliases: C2×C63⋊C3, C6314C6, C1262C3, C42.2C32, C1413- 1+2, C7⋊C94C6, C181(C7⋊C3), C21.8(C3×C6), C74(C2×3- 1+2), C93(C2×C7⋊C3), (C2×C7⋊C9)⋊1C3, C3.3(C6×C7⋊C3), C6.2(C3×C7⋊C3), (C6×C7⋊C3).1C3, (C3×C7⋊C3).3C6, SmallGroup(378,24)

Series: Derived Chief Lower central Upper central

C1C21 — C2×C63⋊C3
C1C7C21C63C63⋊C3 — C2×C63⋊C3
C7C21 — C2×C63⋊C3
C1C6C18

Generators and relations for C2×C63⋊C3
 G = < a,b,c | a2=b63=c3=1, ab=ba, ac=ca, cbc-1=b25 >

21C3
21C6
7C32
7C9
7C9
3C7⋊C3
7C18
7C3×C6
7C18
73- 1+2
3C2×C7⋊C3
7C2×3- 1+2

Smallest permutation representation of C2×C63⋊C3
On 126 points
Generators in S126
(1 70)(2 71)(3 72)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 79)(11 80)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 90)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 100)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(41 110)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 121)(53 122)(54 123)(55 124)(56 125)(57 126)(58 64)(59 65)(60 66)(61 67)(62 68)(63 69)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(2 59 26)(3 54 51)(4 49 13)(5 44 38)(6 39 63)(7 34 25)(8 29 50)(9 24 12)(10 19 37)(11 14 62)(15 57 36)(16 52 61)(17 47 23)(18 42 48)(20 32 35)(21 27 60)(28 55 46)(30 45 33)(31 40 58)(41 53 56)(64 100 109)(65 95 71)(66 90 96)(67 85 121)(68 80 83)(69 75 108)(72 123 120)(73 118 82)(74 113 107)(76 103 94)(77 98 119)(78 93 81)(79 88 106)(84 126 105)(86 116 92)(87 111 117)(89 101 104)(97 124 115)(99 114 102)(110 122 125)

G:=sub<Sym(126)| (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,126)(58,64)(59,65)(60,66)(61,67)(62,68)(63,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (2,59,26)(3,54,51)(4,49,13)(5,44,38)(6,39,63)(7,34,25)(8,29,50)(9,24,12)(10,19,37)(11,14,62)(15,57,36)(16,52,61)(17,47,23)(18,42,48)(20,32,35)(21,27,60)(28,55,46)(30,45,33)(31,40,58)(41,53,56)(64,100,109)(65,95,71)(66,90,96)(67,85,121)(68,80,83)(69,75,108)(72,123,120)(73,118,82)(74,113,107)(76,103,94)(77,98,119)(78,93,81)(79,88,106)(84,126,105)(86,116,92)(87,111,117)(89,101,104)(97,124,115)(99,114,102)(110,122,125)>;

G:=Group( (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,126)(58,64)(59,65)(60,66)(61,67)(62,68)(63,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (2,59,26)(3,54,51)(4,49,13)(5,44,38)(6,39,63)(7,34,25)(8,29,50)(9,24,12)(10,19,37)(11,14,62)(15,57,36)(16,52,61)(17,47,23)(18,42,48)(20,32,35)(21,27,60)(28,55,46)(30,45,33)(31,40,58)(41,53,56)(64,100,109)(65,95,71)(66,90,96)(67,85,121)(68,80,83)(69,75,108)(72,123,120)(73,118,82)(74,113,107)(76,103,94)(77,98,119)(78,93,81)(79,88,106)(84,126,105)(86,116,92)(87,111,117)(89,101,104)(97,124,115)(99,114,102)(110,122,125) );

G=PermutationGroup([[(1,70),(2,71),(3,72),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,79),(11,80),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,90),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,100),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(41,110),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,121),(53,122),(54,123),(55,124),(56,125),(57,126),(58,64),(59,65),(60,66),(61,67),(62,68),(63,69)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(2,59,26),(3,54,51),(4,49,13),(5,44,38),(6,39,63),(7,34,25),(8,29,50),(9,24,12),(10,19,37),(11,14,62),(15,57,36),(16,52,61),(17,47,23),(18,42,48),(20,32,35),(21,27,60),(28,55,46),(30,45,33),(31,40,58),(41,53,56),(64,100,109),(65,95,71),(66,90,96),(67,85,121),(68,80,83),(69,75,108),(72,123,120),(73,118,82),(74,113,107),(76,103,94),(77,98,119),(78,93,81),(79,88,106),(84,126,105),(86,116,92),(87,111,117),(89,101,104),(97,124,115),(99,114,102),(110,122,125)]])

58 conjugacy classes

class 1  2 3A3B3C3D6A6B6C6D7A7B9A9B9C9D9E9F14A14B18A18B18C18D18E18F21A21B21C21D42A42B42C42D63A···63L126A···126L
order1233336666779999991414181818181818212121214242424263···63126···126
size11112121112121333321212121333321212121333333333···33···3

58 irreducible representations

dim1111111133333333
type++
imageC1C2C3C3C3C6C6C6C7⋊C33- 1+2C2×C7⋊C3C2×3- 1+2C3×C7⋊C3C6×C7⋊C3C63⋊C3C2×C63⋊C3
kernelC2×C63⋊C3C63⋊C3C2×C7⋊C9C126C6×C7⋊C3C7⋊C9C63C3×C7⋊C3C18C14C9C7C6C3C2C1
# reps114224222222441212

Matrix representation of C2×C63⋊C3 in GL4(𝔽127) generated by

126000
0100
0010
0001
,
107000
02242108
01085998
09811191
,
107000
0100
0104126126
0010
G:=sub<GL(4,GF(127))| [126,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[107,0,0,0,0,22,108,98,0,42,59,111,0,108,98,91],[107,0,0,0,0,1,104,0,0,0,126,1,0,0,126,0] >;

C2×C63⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_{63}\rtimes C_3
% in TeX

G:=Group("C2xC63:C3");
// GroupNames label

G:=SmallGroup(378,24);
// by ID

G=gap.SmallGroup(378,24);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,187,57,1359]);
// Polycyclic

G:=Group<a,b,c|a^2=b^63=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^25>;
// generators/relations

Export

Subgroup lattice of C2×C63⋊C3 in TeX

׿
×
𝔽