Copied to
clipboard

G = C6×C17⋊C4order 408 = 23·3·17

Direct product of C6 and C17⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C6×C17⋊C4, C34⋊C12, D17⋊C12, D34.C6, C1022C4, C17⋊(C2×C12), C513(C2×C4), D17.(C2×C6), (C3×D17)⋊3C4, (C6×D17).3C2, (C3×D17).3C22, SmallGroup(408,39)

Series: Derived Chief Lower central Upper central

C1C17 — C6×C17⋊C4
C1C17D17C3×D17C3×C17⋊C4 — C6×C17⋊C4
C17 — C6×C17⋊C4
C1C6

Generators and relations for C6×C17⋊C4
 G = < a,b,c | a6=b17=c4=1, ab=ba, ac=ca, cbc-1=b4 >

17C2
17C2
17C4
17C22
17C4
17C6
17C6
17C2×C4
17C12
17C12
17C2×C6
17C2×C12

Smallest permutation representation of C6×C17⋊C4
On 102 points
Generators in S102
(1 69 35 52 18 86)(2 70 36 53 19 87)(3 71 37 54 20 88)(4 72 38 55 21 89)(5 73 39 56 22 90)(6 74 40 57 23 91)(7 75 41 58 24 92)(8 76 42 59 25 93)(9 77 43 60 26 94)(10 78 44 61 27 95)(11 79 45 62 28 96)(12 80 46 63 29 97)(13 81 47 64 30 98)(14 82 48 65 31 99)(15 83 49 66 32 100)(16 84 50 67 33 101)(17 85 51 68 34 102)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)
(1 52)(2 65 17 56)(3 61 16 60)(4 57 15 64)(5 53 14 68)(6 66 13 55)(7 62 12 59)(8 58 11 63)(9 54 10 67)(18 69)(19 82 34 73)(20 78 33 77)(21 74 32 81)(22 70 31 85)(23 83 30 72)(24 79 29 76)(25 75 28 80)(26 71 27 84)(35 86)(36 99 51 90)(37 95 50 94)(38 91 49 98)(39 87 48 102)(40 100 47 89)(41 96 46 93)(42 92 45 97)(43 88 44 101)

G:=sub<Sym(102)| (1,69,35,52,18,86)(2,70,36,53,19,87)(3,71,37,54,20,88)(4,72,38,55,21,89)(5,73,39,56,22,90)(6,74,40,57,23,91)(7,75,41,58,24,92)(8,76,42,59,25,93)(9,77,43,60,26,94)(10,78,44,61,27,95)(11,79,45,62,28,96)(12,80,46,63,29,97)(13,81,47,64,30,98)(14,82,48,65,31,99)(15,83,49,66,32,100)(16,84,50,67,33,101)(17,85,51,68,34,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,52)(2,65,17,56)(3,61,16,60)(4,57,15,64)(5,53,14,68)(6,66,13,55)(7,62,12,59)(8,58,11,63)(9,54,10,67)(18,69)(19,82,34,73)(20,78,33,77)(21,74,32,81)(22,70,31,85)(23,83,30,72)(24,79,29,76)(25,75,28,80)(26,71,27,84)(35,86)(36,99,51,90)(37,95,50,94)(38,91,49,98)(39,87,48,102)(40,100,47,89)(41,96,46,93)(42,92,45,97)(43,88,44,101)>;

G:=Group( (1,69,35,52,18,86)(2,70,36,53,19,87)(3,71,37,54,20,88)(4,72,38,55,21,89)(5,73,39,56,22,90)(6,74,40,57,23,91)(7,75,41,58,24,92)(8,76,42,59,25,93)(9,77,43,60,26,94)(10,78,44,61,27,95)(11,79,45,62,28,96)(12,80,46,63,29,97)(13,81,47,64,30,98)(14,82,48,65,31,99)(15,83,49,66,32,100)(16,84,50,67,33,101)(17,85,51,68,34,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,52)(2,65,17,56)(3,61,16,60)(4,57,15,64)(5,53,14,68)(6,66,13,55)(7,62,12,59)(8,58,11,63)(9,54,10,67)(18,69)(19,82,34,73)(20,78,33,77)(21,74,32,81)(22,70,31,85)(23,83,30,72)(24,79,29,76)(25,75,28,80)(26,71,27,84)(35,86)(36,99,51,90)(37,95,50,94)(38,91,49,98)(39,87,48,102)(40,100,47,89)(41,96,46,93)(42,92,45,97)(43,88,44,101) );

G=PermutationGroup([[(1,69,35,52,18,86),(2,70,36,53,19,87),(3,71,37,54,20,88),(4,72,38,55,21,89),(5,73,39,56,22,90),(6,74,40,57,23,91),(7,75,41,58,24,92),(8,76,42,59,25,93),(9,77,43,60,26,94),(10,78,44,61,27,95),(11,79,45,62,28,96),(12,80,46,63,29,97),(13,81,47,64,30,98),(14,82,48,65,31,99),(15,83,49,66,32,100),(16,84,50,67,33,101),(17,85,51,68,34,102)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)], [(1,52),(2,65,17,56),(3,61,16,60),(4,57,15,64),(5,53,14,68),(6,66,13,55),(7,62,12,59),(8,58,11,63),(9,54,10,67),(18,69),(19,82,34,73),(20,78,33,77),(21,74,32,81),(22,70,31,85),(23,83,30,72),(24,79,29,76),(25,75,28,80),(26,71,27,84),(35,86),(36,99,51,90),(37,95,50,94),(38,91,49,98),(39,87,48,102),(40,100,47,89),(41,96,46,93),(42,92,45,97),(43,88,44,101)]])

48 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A6B6C6D6E6F12A···12H17A17B17C17D34A34B34C34D51A···51H102A···102H
order122233444466666612···12171717173434343451···51102···102
size1117171117171717111717171717···17444444444···44···4

48 irreducible representations

dim11111111114444
type+++++
imageC1C2C2C3C4C4C6C6C12C12C17⋊C4C2×C17⋊C4C3×C17⋊C4C6×C17⋊C4
kernelC6×C17⋊C4C3×C17⋊C4C6×D17C2×C17⋊C4C3×D17C102C17⋊C4D34D17C34C6C3C2C1
# reps12122242444488

Matrix representation of C6×C17⋊C4 in GL5(𝔽409)

4080000
053000
005300
000530
000053
,
10000
034238253104
010051
0010341
000150
,
10000
052345336296
013369365272
018559361353
021036310736

G:=sub<GL(5,GF(409))| [408,0,0,0,0,0,53,0,0,0,0,0,53,0,0,0,0,0,53,0,0,0,0,0,53],[1,0,0,0,0,0,342,1,0,0,0,38,0,1,0,0,253,0,0,1,0,104,51,341,50],[1,0,0,0,0,0,52,13,185,210,0,345,369,59,363,0,336,365,361,107,0,296,272,353,36] >;

C6×C17⋊C4 in GAP, Magma, Sage, TeX

C_6\times C_{17}\rtimes C_4
% in TeX

G:=Group("C6xC17:C4");
// GroupNames label

G:=SmallGroup(408,39);
// by ID

G=gap.SmallGroup(408,39);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-17,60,7804,819]);
// Polycyclic

G:=Group<a,b,c|a^6=b^17=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C6×C17⋊C4 in TeX

׿
×
𝔽