Copied to
clipboard

G = C2×A4×C3⋊S3order 432 = 24·33

Direct product of C2, A4 and C3⋊S3

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×A4×C3⋊S3, C6⋊(S3×A4), (C6×A4)⋊5S3, (C3×A4)⋊11D6, C628(C2×C6), (C2×C62)⋊6C6, C325(C22×A4), (C32×A4)⋊10C22, C32(C2×S3×A4), (A4×C3×C6)⋊5C2, (C3×C6)⋊4(C2×A4), (C2×C6)⋊5(S3×C6), C232(C3×C3⋊S3), C222(C6×C3⋊S3), (C23×C3⋊S3)⋊3C3, (C22×C3⋊S3)⋊7C6, (C22×C6)⋊3(C3×S3), SmallGroup(432,764)

Series: Derived Chief Lower central Upper central

C1C62 — C2×A4×C3⋊S3
C1C3C32C62C32×A4A4×C3⋊S3 — C2×A4×C3⋊S3
C62 — C2×A4×C3⋊S3
C1C2

Generators and relations for C2×A4×C3⋊S3
 G = < a,b,c,d,e,f,g | a2=b2=c2=d3=e3=f3=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, dbd-1=bc=cb, be=eb, bf=fb, bg=gb, dcd-1=b, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, geg=e-1, gfg=f-1 >

Subgroups: 1768 in 266 conjugacy classes, 45 normal (15 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C23, C32, C32, A4, A4, D6, C2×C6, C2×C6, C24, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C2×A4, C2×A4, C22×S3, C22×C6, C33, C3×A4, C3×A4, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C22×A4, S3×C23, C3×C3⋊S3, C32×C6, S3×A4, C6×A4, C6×A4, C22×C3⋊S3, C22×C3⋊S3, C2×C62, C32×A4, C6×C3⋊S3, C2×S3×A4, C23×C3⋊S3, A4×C3⋊S3, A4×C3×C6, C2×A4×C3⋊S3
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2×C6, C3×S3, C3⋊S3, C2×A4, S3×C6, C2×C3⋊S3, C22×A4, C3×C3⋊S3, S3×A4, C6×C3⋊S3, C2×S3×A4, A4×C3⋊S3, C2×A4×C3⋊S3

Smallest permutation representation of C2×A4×C3⋊S3
On 54 points
Generators in S54
(1 8)(2 9)(3 7)(4 42)(5 40)(6 41)(10 13)(11 14)(12 15)(16 20)(17 21)(18 19)(22 25)(23 26)(24 27)(28 31)(29 32)(30 33)(34 38)(35 39)(36 37)(43 47)(44 48)(45 46)(49 52)(50 53)(51 54)
(1 8)(2 9)(4 42)(6 41)(11 14)(12 15)(17 21)(18 19)(23 26)(24 27)(29 32)(30 33)(35 39)(36 37)(43 47)(44 48)(50 53)(51 54)
(2 9)(3 7)(4 42)(5 40)(10 13)(12 15)(16 20)(18 19)(22 25)(24 27)(28 31)(30 33)(34 38)(36 37)(44 48)(45 46)(49 52)(51 54)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 50 11)(2 51 12)(3 49 10)(4 37 44)(5 38 45)(6 39 43)(7 52 13)(8 53 14)(9 54 15)(16 28 22)(17 29 23)(18 30 24)(19 33 27)(20 31 25)(21 32 26)(34 46 40)(35 47 41)(36 48 42)
(1 23 41)(2 24 42)(3 22 40)(4 9 27)(5 7 25)(6 8 26)(10 28 46)(11 29 47)(12 30 48)(13 31 45)(14 32 43)(15 33 44)(16 34 49)(17 35 50)(18 36 51)(19 37 54)(20 38 52)(21 39 53)
(4 27)(5 25)(6 26)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 46)(17 47)(18 48)(19 44)(20 45)(21 43)(22 40)(23 41)(24 42)(28 34)(29 35)(30 36)(31 38)(32 39)(33 37)

G:=sub<Sym(54)| (1,8)(2,9)(3,7)(4,42)(5,40)(6,41)(10,13)(11,14)(12,15)(16,20)(17,21)(18,19)(22,25)(23,26)(24,27)(28,31)(29,32)(30,33)(34,38)(35,39)(36,37)(43,47)(44,48)(45,46)(49,52)(50,53)(51,54), (1,8)(2,9)(4,42)(6,41)(11,14)(12,15)(17,21)(18,19)(23,26)(24,27)(29,32)(30,33)(35,39)(36,37)(43,47)(44,48)(50,53)(51,54), (2,9)(3,7)(4,42)(5,40)(10,13)(12,15)(16,20)(18,19)(22,25)(24,27)(28,31)(30,33)(34,38)(36,37)(44,48)(45,46)(49,52)(51,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,50,11)(2,51,12)(3,49,10)(4,37,44)(5,38,45)(6,39,43)(7,52,13)(8,53,14)(9,54,15)(16,28,22)(17,29,23)(18,30,24)(19,33,27)(20,31,25)(21,32,26)(34,46,40)(35,47,41)(36,48,42), (1,23,41)(2,24,42)(3,22,40)(4,9,27)(5,7,25)(6,8,26)(10,28,46)(11,29,47)(12,30,48)(13,31,45)(14,32,43)(15,33,44)(16,34,49)(17,35,50)(18,36,51)(19,37,54)(20,38,52)(21,39,53), (4,27)(5,25)(6,26)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,46)(17,47)(18,48)(19,44)(20,45)(21,43)(22,40)(23,41)(24,42)(28,34)(29,35)(30,36)(31,38)(32,39)(33,37)>;

G:=Group( (1,8)(2,9)(3,7)(4,42)(5,40)(6,41)(10,13)(11,14)(12,15)(16,20)(17,21)(18,19)(22,25)(23,26)(24,27)(28,31)(29,32)(30,33)(34,38)(35,39)(36,37)(43,47)(44,48)(45,46)(49,52)(50,53)(51,54), (1,8)(2,9)(4,42)(6,41)(11,14)(12,15)(17,21)(18,19)(23,26)(24,27)(29,32)(30,33)(35,39)(36,37)(43,47)(44,48)(50,53)(51,54), (2,9)(3,7)(4,42)(5,40)(10,13)(12,15)(16,20)(18,19)(22,25)(24,27)(28,31)(30,33)(34,38)(36,37)(44,48)(45,46)(49,52)(51,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,50,11)(2,51,12)(3,49,10)(4,37,44)(5,38,45)(6,39,43)(7,52,13)(8,53,14)(9,54,15)(16,28,22)(17,29,23)(18,30,24)(19,33,27)(20,31,25)(21,32,26)(34,46,40)(35,47,41)(36,48,42), (1,23,41)(2,24,42)(3,22,40)(4,9,27)(5,7,25)(6,8,26)(10,28,46)(11,29,47)(12,30,48)(13,31,45)(14,32,43)(15,33,44)(16,34,49)(17,35,50)(18,36,51)(19,37,54)(20,38,52)(21,39,53), (4,27)(5,25)(6,26)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,46)(17,47)(18,48)(19,44)(20,45)(21,43)(22,40)(23,41)(24,42)(28,34)(29,35)(30,36)(31,38)(32,39)(33,37) );

G=PermutationGroup([[(1,8),(2,9),(3,7),(4,42),(5,40),(6,41),(10,13),(11,14),(12,15),(16,20),(17,21),(18,19),(22,25),(23,26),(24,27),(28,31),(29,32),(30,33),(34,38),(35,39),(36,37),(43,47),(44,48),(45,46),(49,52),(50,53),(51,54)], [(1,8),(2,9),(4,42),(6,41),(11,14),(12,15),(17,21),(18,19),(23,26),(24,27),(29,32),(30,33),(35,39),(36,37),(43,47),(44,48),(50,53),(51,54)], [(2,9),(3,7),(4,42),(5,40),(10,13),(12,15),(16,20),(18,19),(22,25),(24,27),(28,31),(30,33),(34,38),(36,37),(44,48),(45,46),(49,52),(51,54)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,50,11),(2,51,12),(3,49,10),(4,37,44),(5,38,45),(6,39,43),(7,52,13),(8,53,14),(9,54,15),(16,28,22),(17,29,23),(18,30,24),(19,33,27),(20,31,25),(21,32,26),(34,46,40),(35,47,41),(36,48,42)], [(1,23,41),(2,24,42),(3,22,40),(4,9,27),(5,7,25),(6,8,26),(10,28,46),(11,29,47),(12,30,48),(13,31,45),(14,32,43),(15,33,44),(16,34,49),(17,35,50),(18,36,51),(19,37,54),(20,38,52),(21,39,53)], [(4,27),(5,25),(6,26),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,46),(17,47),(18,48),(19,44),(20,45),(21,43),(22,40),(23,41),(24,42),(28,34),(29,35),(30,36),(31,38),(32,39),(33,37)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E3F3G···3N6A6B6C6D6E6F6G···6N6O···6V6W6X6Y6Z
order122222223333333···36666666···66···66666
size11339927272222448···82222446···68···836363636

48 irreducible representations

dim111111222233366
type++++++++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6A4C2×A4C2×A4S3×A4C2×S3×A4
kernelC2×A4×C3⋊S3A4×C3⋊S3A4×C3×C6C23×C3⋊S3C22×C3⋊S3C2×C62C6×A4C3×A4C22×C6C2×C6C2×C3⋊S3C3⋊S3C3×C6C6C3
# reps121242448812144

Matrix representation of C2×A4×C3⋊S3 in GL7(ℤ)

-1000000
0-100000
00-10000
000-1000
0000-100
00000-10
000000-1
,
1000000
0100000
0010000
0001000
0000-100
0000010
00000-1-1
,
1000000
0100000
0010000
0001000
0000100
00000-10
0000-10-1
,
1000000
0100000
0010000
0001000
0000010
0000-1-1-2
0000001
,
0100000
-1-100000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
00-1-1000
0010000
0000100
0000010
0000001
,
-1000000
1100000
00-10000
0011000
0000100
0000010
0000001

G:=sub<GL(7,Integers())| [-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0,-2,1],[0,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] >;

C2×A4×C3⋊S3 in GAP, Magma, Sage, TeX

C_2\times A_4\times C_3\rtimes S_3
% in TeX

G:=Group("C2xA4xC3:S3");
// GroupNames label

G:=SmallGroup(432,764);
// by ID

G=gap.SmallGroup(432,764);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-3,-3,269,123,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^3=e^3=f^3=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,b*g=g*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,g*e*g=e^-1,g*f*g=f^-1>;
// generators/relations

׿
×
𝔽