Extensions 1→N→G→Q→1 with N=C18 and Q=C2×A4

Direct product G=N×Q with N=C18 and Q=C2×A4
dρLabelID
A4×C2×C18108A4xC2xC18432,546

Semidirect products G=N:Q with N=C18 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C18⋊(C2×A4) = C2×D9⋊A4φ: C2×A4/C22C6 ⊆ Aut C18546+C18:(C2xA4)432,539
C182(C2×A4) = C22×C9⋊A4φ: C2×A4/C23C3 ⊆ Aut C18108C18:2(C2xA4)432,547
C183(C2×A4) = C2×A4×D9φ: C2×A4/A4C2 ⊆ Aut C18546+C18:3(C2xA4)432,540

Non-split extensions G=N.Q with N=C18 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C18.1(C2×A4) = Dic9.A4φ: C2×A4/C22C6 ⊆ Aut C1814412+C18.1(C2xA4)432,261
C18.2(C2×A4) = D18.A4φ: C2×A4/C22C6 ⊆ Aut C187212-C18.2(C2xA4)432,263
C18.3(C2×A4) = Dic9⋊A4φ: C2×A4/C22C6 ⊆ Aut C181086-C18.3(C2xA4)432,265
C18.4(C2×A4) = C4×C9⋊A4φ: C2×A4/C23C3 ⊆ Aut C181083C18.4(C2xA4)432,326
C18.5(C2×A4) = C2×C18.A4φ: C2×A4/C23C3 ⊆ Aut C18144C18.5(C2xA4)432,328
C18.6(C2×A4) = C36.A4φ: C2×A4/C23C3 ⊆ Aut C181446C18.6(C2xA4)432,330
C18.7(C2×A4) = Dic9.2A4φ: C2×A4/A4C2 ⊆ Aut C181444+C18.7(C2xA4)432,262
C18.8(C2×A4) = D9×SL2(𝔽3)φ: C2×A4/A4C2 ⊆ Aut C18724-C18.8(C2xA4)432,264
C18.9(C2×A4) = A4×Dic9φ: C2×A4/A4C2 ⊆ Aut C181086-C18.9(C2xA4)432,266
C18.10(C2×A4) = C4×C9.A4central extension (φ=1)1083C18.10(C2xA4)432,40
C18.11(C2×A4) = C2×Q8⋊C27central extension (φ=1)432C18.11(C2xA4)432,41
C18.12(C2×A4) = Q8.C54central extension (φ=1)2162C18.12(C2xA4)432,42
C18.13(C2×A4) = C22×C9.A4central extension (φ=1)108C18.13(C2xA4)432,225
C18.14(C2×A4) = A4×C36central extension (φ=1)1083C18.14(C2xA4)432,325
C18.15(C2×A4) = C18×SL2(𝔽3)central extension (φ=1)144C18.15(C2xA4)432,327
C18.16(C2×A4) = C9×C4.A4central extension (φ=1)1442C18.16(C2xA4)432,329

׿
×
𝔽